
Survival of the Fattest?Self-thinning among TreesReport 3, Department of Mathematics and Physics,The Royal Veterinary and Agricultural UniversityJens Lund�April 29, 1998AbstractWe consider data from an even-aged, unthinned Sitka spruce experiment in Den-mark. The data is described in detail and the self-thinning process is modelledby a survival model for the discrete survival times. The survival model is basedon Cox's proportional hazards model and allows for spatial dependence amongthe trees. The concept of competition indices is discussed at some length.The results show that the small trees have a higher risk of dying than the largetrees and that Hegyi's competition index based on basal area is a signi�cantcovariate in the model. The higher the competition index is, the higher is the riskof dying. Finally, there was also a signi�cant dependence on the trees' positionsin the experiment.PrefaceThis report is part of a PhD course on forest biometrics under supervision of JensPeter Skovsgaard, The Danish Forest and Landscape Research Institute (fsl). Thecourse description is included in Appendix A.1 IntroductionThis report is an analysis of data from an even-aged, unthinned Sitka spruce experi-ment. The dataset includes breast height diameters at several time points as well asthe positions of the individual trees. Several things are of interest, for example:� The self-thinning process. As time goes by some of the trees die. A statisti-cal description of this mechanism provides a signi�cant reference for thinningstrategies and for models for managed forest stands.� The growth of the trees. The diameters were measured several times, so wehave data on the development of the tree diameters over time. A model for thisprocess would cast light on the development of even-aged forest stands and itwould be of special interest to model the spatial competition between the trees.�Address: The Royal Veterinary and Agricultural University, Department of Mathematics andPhysics, Thorvaldsensvej 40, DK � 1871 Frederiksberg C, Denmark, e-mail: jlund@dina.kvl.dk.



Survival of the Fattest?� The spatial distribution of the diameters at a �xed time point.� During the observation period for the experiment a minor gap was created in thesouthern part of the experiment due to windfall. It could be of some interest toquantify the spread of the windfall.The time for this project did not allow me to study all these points, so I have studiedonly the self-thinning process. Due to data limitations this study should be considereda pilot project that may guide further, more comprehensive and detailed analyses.In Section 3 we describe a discrete survival model with time dependent covariates.Among the covariates is competition indices that model spatial dependence amongthe individuals. The competition indices is based on the relative size of the trees.As it turns out, such competition indices might be the same as a description of thedistribution of the tree sizes at a �xed time point.This report is aimed towards both foresters and statisticians. As I am a statisticianmyself, some forest related comments are probably banal. On the other hand some ofmy points might be understandable by statisticians, but too technical for the averageforester. I have tried to mark some of these points in the text.In Section 2 we describe the data in detail and comment on graphs in Appendix B.The size of Section 2 re�ects the amount of time I have spent on �nding detaileddescriptions of the data and getting familiar with the data. Section 3 is a descriptionof the self-thinning model, and the results from the analyses are reported in Section 4.A discussion and some concluding remarks can be found in Section 5.2 Description of DataThis section describes the data in various ways. Section 2.1 is an introduction to theexperiment and Section 2.2 gives a detailed description of the dataset. The informationin this section is mainly taken from [Sko97b] and the �eld note books with detailedinformation on each measurement. In order to give a sense of the dataset, a largenumber of graphs are shown in Appendix B. Section 2.3 contains comments on thegraphs. The graphs are in the appendix, rather than in the main text, because theyare best reproduced at a large scale and they would then clutter up the main text.2.1 The ExperimentExperiment mbii is situated in the northern part of Jutland on Thy national forestdistrict in �Nystrup dune plantation�, compartment 437e. The experiment is conductedby The Danish Forest and Landscape Research Institute (fsl). This study comprisesplot k, an unthinned plot of even-aged Sitka spruce. Plot k of the present experimentis located on exactly the same spot as the unthinned plot k of the previous experimentmb. Seeds for the present generation of trees originated from the previous experiment.The map in Figure 1 is reproduced from [Hen58, p. 296] and shows the old design ofthe southern part of experiment mb with plot k in the middle of the southern part ofthe experiment. The size of the plot is approximately 39m � 55m, which is 0.21ha.Around the plot is a border of a few meters with the same (non-)treatment as theexperiment. As seen in Figure 1 the ground in experiment mbii slopes down towardsthe north-west corner, and the di�erence in elevation is 3 metres.2



Survival of the Fattest?

Figure 1: Map of experiment mb. Plot k of experiment mbii is placed atthe old A-grade thinning in plot k.The experiment was re-planted in the spring of 1957 with approximately half larch andhalf Sitka spruce, 927 trees in total. The larch trees were planted to prevent late frostdamages in the Sitka spruce in the beginning. The larch trees were felled in 1972�1975,and the �rst measurements of the remaining 479 Sitka spruce trees were made in 1975.There is no further thinning in the experiment and the dead trees due to self-thinningare not removed from the experiment. The Sitka spruce stand is described as closedin the southern part and more open in the north-west corner in 1975. Although theterms �open� and �closed� here refer to the canopy, we get the same impression fromFigure 13 on page 32 that shows a map with the diameters of the trees marked. At the�rst measurement in 1975 the basal area for Sitka spruce was 17:8m2=ha and at thelatest measurement in 1995 the basal area was 61:7m2=ha. The corresponding numberof living trees were 2228 trees=ha in 1975 and 1133 trees=ha in 1995.2.2 The MeasurementsThe dataset consists of the positions of all the trees (including the larch trees), mea-surements of all the breast height diameters in 1975, 1979, 1984, 1990, and 1995, andmeasurements of some of the individual tree heights at the same occasions.The rest of this section expands on this very short description, and supplies furtherdetails on the data collection.The �rst 11 lines of the main data-�le is displayed in Table 1 in order to make thefollowing description of the dataset more comprehensible.Each of the 927 trees are allocated a unique individual number that is used for referencepurposes. The species of the trees are Sitka spruce (479 trees), larch (444 trees), andbirch (4 trees). The birch and larch trees were felled and removed during 1972�1975.For each tree we have the position in terms of row number and number within therow, as well as the coordinates in a usual xy-coordinate system. Figure 4 shows thepositions and species in terms of row number and number within the row. We see thatthe main species Sitka spruce and larch are fairly homogeneously distributed. Figure 53



Survival of the Fattest?indiv row no spec dbh1975 dbh1979 dbh1982 dbh1984 dbh1990 dbh1995 x y remark1 remark21 1 1 SGR 34 0 0 0 0 0 NA NA "" ""2 1 2 SGR 81 87 0 94 0 0 -1.30 1.20 "" ""3 1 3 LAR 105 0 0 0 0 0 -1.42 2.57 "" ""4 1 4 SGR 140 164 0 187 215 243.5 -1.40 3.72 "" ""5 1 5 LAR 85 0 0 0 0 0 -1.52 4.95 "" ""6 1 6 SGR 137 158 0 171 176 0 -1.60 6.20 "" ""7 1 7 LAR 12 0 0 0 0 0 NA NA "" ""8 1 8 SGR 6 6 0 12 10 0 -1.52 7.66 "" ""9 1 9 SGR 104 132 0 178 230 268.5 -1.50 8.97 "" ""10 1 10 SGR 67 77 0 80 76 0 -1.50 9.40 "" ""Table 1: The �rst 11 lines of the data-�le mb2a.txt.shows all the positions in the xy-coordinate system. The x-axis runs approximatelyin the west-east direction and the y-axis runs in the south-north direction, and rowsrun roughly parallel to the y-axis. This means north will be in the up-ward directionon all the graphs. Compare also with the map in Figure 1. The unit on the axes ismetres (m). The extent of the x position is from -40.1m to -1.3m and the extent ofthe y position is from 0.51m to 55.28m. As there are 24 rows, this means that theaverage spacing between original rows is (�1:3m � (�40:1m))=(24 � 1) = 1:7m. Theoriginal spacing within rows is on average (55:28m� 0:51m)=37:625 = 1:46m, becausethe average number of trees in a row is 927=24 = 38:625. This is in good agreementwith [Sko97b], that states an estimated original spacing of 1:65m � 1:25m. Note thatrow number 1 has high x-values (close to 0m), whereas row number 24 has low x-values(close to -40m). The number within the row counts from low y-values to high y-valuesfor the odd rows, and in the opposite direction for even rows.The position in the xy-coordinate system is missing for 41 trees because the stumps (orthe trees) have decayed or disappeared from the experiment. None of these 41 treeshas any associated remarks. The distribution on species is Sitka spruce (20 trees),larch (20 trees), and birch (1 tree).We would like to de�ne a position for these 41 trees based on their row number andnumber within the row. We consider two di�erent situations:� One or more trees with missing positions are at the end of a row. In this situationthe trees are placed in continuation of the row at a distance as between the twoprevious trees in the row.(These two trees have in all but one case their positions measured. In the singleproblematic case, tree number 732, the tree is placed at the distance as betweenthe two previous trees with measured positions. This seems reasonable from aplot of the positions.)� Otherwise, one or more trees are standing in a row with at least one tree on eachside with the position measured. In this case the trees are placed uniformly inthe space between the nearest two trees within the row with measured positions.The de�ned positions are marked in Figure 5 with �lled boxes.I believe this algorithm is reasonable, and because the trees whose positions are missingtend to be small it will probably not matter that much what positions they have.Anyway, the error made by having a minor error on the positions of a few trees isprobably not greater than if the trees are completely left out from the analyses.The diameters at breast height (dbh), i.e. 1.3m above ground level, are measured onall the trees in the spring of the years 1975, 1979, 1984, 1990, and 1995. The unit of4



Survival of the Fattest?the measurements is mm. Of course the larch and birch trees, that were felled andremoved at the latest 1975, are only measured in 1975. If they were felled before 1975their stump were measured. The exact dates the measurements are taken are 25 May1975, 22 May 1979, 15 May 1984, 11 January 1990, and 10 May 1995.On 24 November 1981 windfall occurred in the southern part of the experiment togetherwith a few trees in the middle that were exposed too. The placement of the 43 fallentrees are marked in Figure 6. Dbh measurements were taken on the fallen trees on30 April 1982, and the fallen trees were removed from the experiment afterwards.Note that the border of the experiment were not harmed by the windfall, a commonphenomenon according to foresters. By now there are self-sown birch in the southernpart of the experiment.In the data �le (Table 1), the dbh measurements implicitly de�ne the time of deathfor the tree. We de�ne the time of death as the time of the �rst measurement occasionthe tree is not measured. Special care must be taken with the trees that are hit by thewindfall in 1981 or still are alive at the last measurement in 1995. We only know thatthe trees survived longer than the windfall or 1995, respectively. In a survival analysisterminology they are �censored� at these events. We assume that the 43 trees in thewindfall are censored at the measurement in 1984. This implies that the 43 trees werealive prior to the measurement in 1984, which might not be the case. However thisseems the most reasonable to do. Table 2 shows the number of dead and censoredSitka spruce in the measurement years.Year '75 '79 '84 '90 '95 TotalDead 1 2 9 66 115 193Censored 0 0 43 0 243 286Total 1 2 52 66 358 479Table 2: Number of dead individuals, Sitka spruce.In the same years as the dbh measurements were taken some of the heights weremeasured too. For a start 53 trees were measured in 1975, whereas only 30 treeswere measured in each of the years 1979, 1984, 1990, and 1995. In total, heightmeasurements involves 54 di�erent trees, so the 30 trees were in general chosen amongthe original 53 trees. The rule is to use a tree as a height tree as long as it is alive.When a tree dies, another one of the original 53 trees are chosen to ensure that 30height measurements were taken. The height trees are distributed regularly in spaceas seen from Figure 7. The unit of the height measurements is dm. We will not usethe height measurements in the survival model in Section 3, but we comment on somegraphs in Section 2.3.Two remark �elds in the data-set are used for additional information about the trees.The remarks are dead (9 trees), fork (41 trees), resin (1 tree), great spruce bark beetle(1), and bark peel by deer (1 tree). Note that only the �rst part of a forking tree ismarked as such and the following parts are recognized by having the same position.Further note that two trees with the same position have the remark �not fork�. Thesecond remark �eld is only used four times, and in all cases to indicate a dead fork.The 13 trees with the remark �dead� are all measured at the last measurement in1995, and the interpretation of the remark is that it will not be measured at the nextmeasurement time. However this may also be true for a lot of other trees, so thisinformation is not really useful and will thus not be used.5



Survival of the Fattest?In the analyses below forks are not treated in any special way, but rather as two(or more) �independent� trees that happen to have the same position. This is quitereasonable. It is e.g. perfectly possible that one of the forks die before the others do.The two trees at the same position, that are not forks, are treated in the same wayas if they were forks. This means they get no special attention. Of course, forks arenot independent, but this approach means that the dependence (competition for light,water, etc.) among forks are modelled as the competition among all other trees.2.3 GraphsIn this section we comment on some graphs of the raw data. We do not try to modelthe data in this section, but rather make unsophisticated observations from the graphs.The number of graphs is rather large so they are displayed in appendix B.The graphs in the appendix are organized as follows:� Figure 4�7 all regard the positions of the trees. We have commented on thesegraphs previously in Section 2.2.� Figure 8 and 9 show the longitudinal development of the diameter measurements.� Figure 10�12 display graphs of the diameter distribution.� Figure 13�17 are maps of the experiment with circles that have a diameter pro-portional to the diameter of the tree placed at the position of each tree. Treesthat have died before the measurement are marked by small �lled circles. Notethat the largest circle in each graph has the same size in all the graphs and thatthe scale of the circles are di�erent from the scale on the axes.� Figure 18�21 are maps similar to the previous ones, but with the diameter of thecircle proportional to the diameter increment of the tree1. As before, note thatthe largest circle in each graph has the same size in all the graphs.� Figure 22 is a plot of the increments versus the diameters.� Figure 23 is a collection of plots of height versus dbh and log(dbh).The plot of the longitudinal development in Figure 8 can be very disorderly to lookat, so in Figure 9 all the lines are displayed exactly once in one of ten displays. Thelines in the plot stop at the last measurement, so when the trees are measured the lasttime, it looks almost like a vertical line of line ends. When looking at the trees thatdie two things can be noted. First, the trees that die tend to be small, and second,they seem to have very small increments. It can of course be discussed whether thetrees have small increments because they are dying or they die because they are smalland have small increments.The larch trees in the experiment were present to help start the Sitka spruce culture.From Figure 10 it is immediately clear that the larch trees are in fact larger than Sitka1This does not imply that the area of the circle is proportional to the increment in the basal area.One might argue that the eye is more focused on changes in the area of the circles than in changes inthe diameter, and further that the area of the circle should be proportional to the diameter increment.One might also argue that the basal area increment is more biological relevant and should be usedinstead. The variations are endless, and the graphs show more or less the same picture irrespectiveof variable chosen. 6



Survival of the Fattest?spruce in 1975. This means that they, at least in the beginning, grow faster than Sitkaspruce.Figure 11 and 12 compare the size distributions for the Sitka spruce trees in themeasurement years. The boxplots2 in Figure 11 are a simpler way to illustrate the sizedistribution than the histograms in Figure 12. It is seen that the size distribution isright skewed in all the years. This is expected when the trees are small (after all, theyall start at 0 at the same time), but it is also the case when the trees become larger.This is probably a kind of starting e�ect: the trees that start well are most likelyto fare well for the rest of their lives. The reason that a particular tree is better o�from the beginning might be pure chance or a di�erence in the genes of the trees. Thehistograms in Figure 12 show that the distributions are in fact very broad, particularlyfor the later years. The size distribution might be described as approximately uniformon an interval with a heavy right tail attached. This is also the impression from theboxplots in Figure 11 where it is seen that the �rst quartile has approximately thesame size as the distance from the �rst quartile to the median and as the distancefrom the median to the third quartile, but the distance from the third quartile to theright end of the data is larger than this common distance. In [Sko97a], J. P. Skovsgaardoutlines in Section 6.3.2 a theoretical development of the size distribution and he usesthis as a part of his hypothesis 2 on page 52. The theoretical development of the sizedistribution is left skewed ! symmetric ! right skewed ! symmetric. The presentdataset cannot con�rm this development. This might be because we do have diametermeasurements for a 20 year period only and thus do not cover the entire life span ofthe trees. J. P. Skovsgaard [Sko97a, p. 187] also rejects the hypothesis for stands likethe present, although he in contrast talks about left skewed distributions during thewhole life span.One striking feature when comparing the histograms in Figure 12 is that all the distri-butions, except that from 1995, have a number of small trees, i.e. trees with diameterbelow say 10cm. All these small trees were declared dead in 1995. It could of coursevery well be that they died. But as seen from Figure 8 it looks like these trees havehad about the same size for a long period, and it is amazing all of them die in thesame time interval.The maps in Figure 13�17 tell something about the spatial distribution of the sizes.As already noted the map from the start of the experiment in 1975 (Figure 13) showsthat the northern part of the experiment is more open than the southern part. Thisimpression remains valid during the whole period. Note that from 1984 and on themain part of �dead� trees in the southern part of the experiment is the trees in thewindfall. These were removed. If we look at the positions of dead trees in 1990 and1995, Figure 16 and 17, it seems like the dead trees are more likely to be in the eastside of the experiment than the west side. This is con�rmed by the results in Section 4from the survival model in Section 3. It is seen from the plots that the small trees aremore likely to die than the large trees.The maps in Figure 18�21 of the increments suggest that in the beginning, i.e. 1979and 1984, the increments are larger in the more open northern part than in the southern2A boxplot tells some basic facts about the distribution in a way that makes it easy to compareseveral distributions. The horizontal line in the interior is located at the median of the distribution.The box starts at the �rst quartile (25%) and stops at the third quartile (75%). The whisker extendingfrom the top of the box goes to the �rst data value below the median+1.96��the interquartile distance�,where 1.96 is the 0.975 quartile of a N(0; 1) distribution. The whisker at the bottom is de�ned in asimilar way. For data having a Gaussian distribution, approximately 99.2% of the data falls insidethe whiskers. Data points which fall outside the whiskers are indicated by horizontal lines.7



Survival of the Fattest?part. Later on, 1990 and 1995, the increments seem to be more uniformly distributed.Figure 21 of the increments up to 1995 indicates that a few trees have very largeincrements compared to the other trees because there are many small circles present.In fact, Figure 9 of the longitudinal development shows that the increments in theperiod up to 1995 are smaller than in the previous periods and that a few trees despitethis have large increments in the last period. One of the main conclusions in [Sko97a,p. 202] is that unthinned Sitka spruce stands is good at di�erentiating the diametersizes. A comparison between the maps of the sizes of the trees with the maps of theincrements show that the large trees also have the largest increments. This is probablymore clear from Figure 22 that directly shows the increments and diameters plottedagainst each other. When comparing the plot of the dead trees marked in 1990 withthe plot of the increments in 1984 it is seen (once again) that the trees that die arethe trees with small increments. It is quite clear from the plot of the increments thatmore trees have negative or zero increments in the eastern part than the western partof the experiment. This can also be seen from the plots in 1995 (dead trees) and 1990(increments), although not as noticeable.Henriksen [Hen81, p. 14, 56] argues that the diameter-height-regression height = �+� log(dbh) is a simple but very useful model. Figure 23 is a set of plots of height versusdbh and log(dbh). At �rst sight it looks like the simple regression height = �+ �dbhwould be a good �t to the data in 1975 and 1979, whereas the regression height =�+� log(dbh) would be best in 1990 and 1995. In 1984 either regression would �t thedata. This means that there is a development in time: the relation between dbh andheight changes over time. Henriksen [Hen81, p. 21] mentions several aspects of thedevelopment in time, but not that the regression with log(dbh) should be inadequate.I haven't found any further comments in [Hen81] on this, but have been told that theregression with log(dbh) is often not adequate in unthinned stands.3 Self-thinning � a Discrete Survival Model3.1 IntroductionIn this section we make a model for the self-thinning. This is in fact a model forsurvival of the trees. The survival times for the trees are continuous, but the survivaltimes are only observed to be in some discrete intervals between the inspections and wethus have interval censoring. The stand is even aged, so all the trees are censored at thesame ages and we have no hope of estimating the continuous life time distribution. Inthe following we make a discrete survival model with spatial dependence and we end upby modelling the discrete survival times with a grouped version of Cox's proportionalhazards model.Section 2.2 describes among other things how the discrete dead and censoring timesin Table 2 are inferred from the measurements of the diameters. We will use all theliving Sitka spruce trees in 1975 as our population and Table 2 shows that this is 478trees.Sections 3.2�3.3 are an overview of various models for discrete survival times. We startby introducing some notation (Section 3.2) and go on to describe models where thediscrete time hazard is modelled (Section 3.3). Section 3.4 and Section 3.5 discuss indetail how time dependent covariates should be used and how we will allow for spatialdependence through competition indices. 8



Survival of the Fattest?3.2 Notation for Survival of One TreeLet Y 2 f1; : : : ; kg be a discrete survival time with distribution P (Y = j) = �j forj 2 f1; : : : ; kg. De�ne the discrete distribution function j = P (Y � j) = �1+ � � �+�jand the discrete hazard �j = P (Y = jjY � j) = �j�j+���+�k = j�j�11�j�1 . Note that�j = �jQj�1i=1 (1� �i) and P (Y > j) = 1� j =Qji=1(1� �i).If we have a vector of covariates x0 = (x1; : : : ; xd) 2 Rd in addition to the survivaltime Y we will write �j(x), j(x), and �j(x) for the point probabilities, distributionfunction and the discrete time hazard given the covariate x. This means e.g. that wehave the relation �j(x) = �j(x) j�1Yi=1(1� �i(x)): (1)3.3 Modelling of Discrete Time HazardsThe discrete time hazard �j(x) is often modelled when we consider discrete survivaltimes. Sheike and Jensen [SJ95, Sec. 2] outlines several such approaches. One ad-vantage of modelling �j(x) is the easy interpretation in a survival analysis contextand that we can use standard software for generalized linear models (glm) for estima-tion. Both of these aspects use the connection (1) between �j and �j. In the survivalanalysis context here it is natural to interpret this relation as a product built step-wise as time goes by since one can only reach a state (time point) by going throughall the former states (time points). These models are also called �sequential models�in [FT94, Sec. 3.3.4]. Estimation is easy with standard software for glm because thelikelihood (1) for one individual can be interpreted as the likelihood for a �fake� datasetof binomial variables z1 = 0; : : : ; zj�1 = 0; zj = 1, so that �j =Qji=1 �zii (1��i)1�zi asoutlined in [FT94, p. 322]. Censoring can of course also be handled by letting all they variables in the fake dataset take the value 0.We will now look at some speci�c choices of the link function for �j(x). The linkfunction says how �j(x) depends on the covariate vector x. The sign of the parameter� 2 Rd in the following is chosen so that larger values of the components of x givehigher mass to large values of Y provided � > 0.Proportional hazards Assume that there is an underlying continuous survival timewith continuous time hazard �(tjx) = �0(t)e�x0�, which is Cox's proportionalhazards model. Let dt denote the length of a small time interval. Then theinterpretation of the hazard is that �(tjx) dt is the probability of dying beforetime t+ dt given the individual has survived to time t. The survival function isS(tjx) = exp(��0(t)e�x0�) with �0(t) = R t0 �0(s) ds. When we make a groupedversion Y 2 f1; : : : ; kg of a variable with this distribution according to intervals[0; �1], ]�1; �2], : : : , ]�k�1;1], we get j(x) = 1�S(�jjx) = 1�exp(��0(�j)e�x0�)and �j(x) = 1� exp(�e�x0�(�0(�j)� �0(�j�1))). This means that the comple-mentary log-log transform3 cloglog(�j(x)) = log(� log(1� �j(x))) = �̂j � x0� ofthe hazard �j(x) is linear with �̂j = log(�0(�j)��0(�j�1)). This is e.g. describedin [FT94, p. 318].3The complementary log-log transform is the inverse of the distribution function F (t) = 1 �exp(�et) for the extreme-minimal-value distribution. 9



Survival of the Fattest?Logistic model The logistic model uses the logit link4logit(�j(x)) = log �j(x)1� �j(x) = ~�j � x0�:See references in [FT94, Sec. 9.2] and [SJ95].Log-link log(�j) = ~�j � x0�. See reference in [SJ95]. This is a proportional hazardsmodel for the discrete time survival time distribution. A problem is that wemust have unnatural restrictions on the parameter space, because ~�j � x0� mustbe < 0 in order for �j to be in ]0; 1[.We use the grouped version of Cox's proportional hazards model in the following. Thechoice of this model is primarily for its appealing and easy interpretation.3.4 Time Dependent CovariatesWe go into detail about the choice of covariates in this section as we want to havetime dependent covariates and spatial dependence among the individuals. The use fortime dependent covariates is obvious because we suspect the probability of dying todepend on the current size of the tree, which develops through time. Furthermore wesuspect the trees to have a degree of inter-dependence. If two large trees are standingvery close to a small tree we would expect the small tree to have a higher risk of dyingthan if the two large trees were not present. So we want to model some kind of spatialdependence between the trees.The discrete time hazard models in Section 3.3 are very easily modi�ed to allow timedependent covariates. Assume that for each time point 1; : : : ; j up to and includingthe time of death j we have a covariate vector, x1; : : : ; xj . We now exploit the Markovstructure in equation (1) by using the likelihood function �j(x) = �j(xj)Qj�1i=1 (1 ��i(xi)), where in each step we condition on the present value of the covariate, but stilluse the same link function as before for the hazard �j . In our application on trees itseems natural to use the dbh measurements at the previous measurement as covariatein the regression for survival in the present period because the size of the tree a�ectswhat comes in the following period. A sketch of this setup is in Figure 2.Windfalls'75 '95'90'84'82
'90'84'79

'79
'751 2 3 4'57Discret timeCovariates from yearFigure 2: Sketch of discrete times and covariates used.We have only considered models for one individual so far, and we will now go on anddescribe a model for all the trees in the stand and allow for dependence between thetrees. In the classical survival analysis context dependence between the individualshave e.g. been modelled by frailty models5. (A recent reference is [Pet96].) However,4The logit transform is the inverse of the distribution function F (t) = et1+et for the logistic distri-bution.5In short, a frailty model is a model with an unobserved latent variable.10



Survival of the Fattest?this approach does not seem natural here as the dependence among individuals dependon the distance between them and not on any natural groups of individuals. We allowfor dependence through the covariate process instead.We will build the model stepwise through discrete time. Let S denote the set of treesand let t = 1; : : : ; k be the discrete time points considered. The special time pointt = 0 denotes an imaginary time point before the �rst inspection. Introduce the set ofliving trees St at time t. We assume that all trees are alive before time t = 1 so S0 = S.Further note that St � St+1. For s 2 S and t 2 f0; : : : ; kg we put N(s; t) = Ns(t) = 0if tree s is alive at time t and N(s; t) = Ns(t) = 1 if tree s is dead at time t. Thismeans St = fs 2 S j Ns(t) = 0g. De�ne the covariate process X as X(s; t) = Xs(t),the measurements on tree s 2 S at time t. By X(t) we denote the collection of allmeasurements at time t, X(t) = (X(s; t))s2S , and if a tree is dead at time t the deadstatus is the measurement.We now assume that conditionally on the covariates (X(s; t�1))s2St�1 and the dead/alivestatus at the previous measurement the survival of trees in the following time periodare independent events. The important point here is that we allow the survival proba-bility of tree s to depend on the measurements and the status of the other trees S n s.The likelihood is nowL = kYt=1� Ys2St�1nSt �s;t(X(t� 1)) Ys2St�1� �s;t(X(t� 1))��: (2)Here �s;t(X(t � 1)) denotes the hazard of tree s at time t with covariates X(t � 1).With this notation the covariate xi at time i is X(i� 1).For each tree s we will use the measurements on the tree itself and some measure of thecompetition from the neighbouring trees as covariates. In Section 4 we mention thecovariates based on the single tree and in the next Section 3.5 we discuss the measuresof competition from the neighbouring trees.It should be noted that the present setup without problems can be generalized to acontinuous time setup. (This paragraph might be a bit technical.) The framework ofcounting processes as described in [ABGK93] is natural to use in the generalization.The counting process setup does not handle simultaneous deaths easily, but this prob-lem could be solved if necessary. The choice of covariates measured at the previousinspection is quite obvious in the discrete time setting here. However, in a continuoustime setting the analogue is that the covariate processes should be predictable in therelevant �ltration. It is quite easy to check, that if we in the proportional hazardsmodel in Section 3.3 have a predictable time dependent covariate that is piecewiseconstant between the grouping time points, then we get a model that is linear in theparameters with a cloglog transformation of �j . This model is exactly of the abovetype. This means that we can regard the discrete time hazard model with cloglog-linkas a grouped version of a Cox regression model with time dependent covariates.3.5 De�nition of Competition IndexWe would like to include a measure of the size of a tree compared to the other treessurrounding it as a covariate in the regression model. This could tell something aboutthe competition between the trees. V. K. Johansen [Joh96] reviews several such mea-sures also known as competition indices (ci) in order to make a growth model spanning11



Survival of the Fattest?over several periods. Tomé and Burkhart [TB89] also reviews a rather large numberof cis and suggest some modi�ed indices and compare how good the indices predictgrowth. Pukkala [Puk89] compares two di�erent approaches to the de�nition of a ciand takes into account the direction of the competition. In this paper we focus on acompetition index of the type suggested by Hegyi [Heg74], which often is rated as oneof the best, rather than compare several competition indices. We end this section withsome more general and technical remarks about the de�nition of competition indices.Let As(t) denote the basal area for tree s 2 S at time t. We will leave out thedependence on t in the following since all variables will regard the same time point.At each time step we recalculate the competition index based on the measurements atthe previous time point. The competition index suggested by [Heg74] iscis = X~s 6=s : d(s;~s)�4m A~sAs d(s; ~s)where d(s; ~s) is the distance between tree s and tree ~s.We modify this ci slightly. First of all we have trees (e.g. forks) at a distance fromeach other of 0m that would cause the ci to take the value1. Some trees are also veryclose so they cause an unrealistic high ci. These problems are alleviated by de�ningthe minimum distance in the ci to be 0.5m. Second, some small trees also get anunrealistic high ci. In order to avoid that a minority of the trees (approximately 15%)make the distribution of ci highly skewed we impose the restriction that the factorA~s=As is at most 16. With my modi�cations the ci iscis = X~s 6=s : d(s;~s)�4m min(A~sAs ; 16)max(d(s; ~s); 0:5m)with the sum ranging over living trees only.Johansen de�nes in [Joh96] the competition index as the sum over the n living neigh-bour trees nearest to tree s. I �nd my approach that is also used in [Heg74] morenatural, but it will probably not make any great di�erence in this experiment wherethe trees are placed quite regular.In the same way as above, we de�ne a competition index based on the diameters insteadof the basal area. In this case we take the maximum fraction between the diametersto be 4. The original de�nition of the ci in [Heg74] was based on the diameters.Figure 3 is two plots of the ci based on basal area in 1975. As seen from the �rstplot the distribution of ci is heavy tailed. The second plot shows the ci versus thediameters and it con�rms that a large ci is most predominant among small trees. Itmay be noted that from several plots like Figure 3 it seems like the distribution of theci is approximately the same over time, and that the distribution of the ci based onthe diameters have a quite similar shape, although a di�erent scale and not quite asheavy a tail.We will now go on to some more general and technical considerations about competitionindices. This discussion was initiated by Antti Penttinen in some remarks to a talkgiven by me at �workshop: spatial statistics and gis� in Gothenburg, November 25�26,1997. The discussion continued in private communication [Pen97].Stoyan and Grabarnik [SG91] de�nes energy marks for a Gibbs point process andshow certain moment properties of these energy marks. The results are also men-tioned in [SKM95, p. 180, 191], which is an overview of stochastic geometry. In our12
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Figure 3: Plots of ci based on basal area in 1975. The upper plot showsci versus the number of the tree, so the vertical distribution of points givean impression of the distribution of ci. The lower plot shows ci plottedagainst dbh.
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Survival of the Fattest?situation the positions are �xed in advance and we will condition on the positions, sowe will instead of point processes need the theory for Markov random �elds (mrf).The de�nition of the energy marks can easily be generalized to mrf and marked Gibbsprocesses, and essentially the energy mark is a bijective transformation of the condi-tional probability density at each node (tree) given all the other nodes (trees). This�gure is of course a measure of the �stress� on each node caused by the neighboursor in other words the relative size of a tree compared to the neighbours. Because wecompare with the neighbours only, the relative size is in a local sense and not in aglobal sense as e.g. the quartile corresponding to the size compared to the size of allthe trees. Intuitively this conditional probability is an �optimal� choice of ci and aninteresting problem is to make precise the meaning of the word �optimal�. In our casewe look for a linear predictor in a speci�c glm-model.The drawback of this approach is that a reasonable distribution for the mrf consistingof the tree diameters at a speci�c time point must be speci�ed and estimated. Inthis context it is natural to suggest a Gibbs type distribution speci�ed by a set ofneighbourhood relations and a pair potential function �. The neighbourhood relationscan e.g. be chosen as the natural �lattice� put on top of the set of trees6. The likelihoodfor such a distribution isp(X) = 1Z exp�Xs�~s ��Xs; X~s;d(s; ~s)��where Z is the normalizing constant, the sum is taken over all pairs of neighbours, andthe pair potential � is allowed to depend on the distance between the two nodes besidesthe values at the two nodes of course. The dependence on the distance compensatefor the imperfectness of the �lattice�. The pair potential function might be estimatedby non parametric methods or have a parametric form. Non parametric estimation ofpair potential functions is e.g. considered in paper 2 in [Hei97], namely [HP95].A point of initial confusion for my self was the dependence on distance but not e.g.direction. It is easy to verify that it is not reasonable that the covariance functionbetween two nodes (trees) does depend on the distance between the two nodes only:two trees at distance, say, 3m cannot have the same covariance7 irrespective of whetherthere is a tree in between. However, it seems more natural that the pair potentialfunction does depend on the distance only. The pair potential function measuresthe �interaction� between two neighbours at short distances whereas correlation mightvery well exist at larger distances. Even though the pair potential does only dependon distance the covariance function also depend on the positions of the points becauseof the neighbour relations.The above approach suggest that we must make a model for the simultaneous dis-tribution of the diameters at a �xed time point. On the other hand we de�ned acompetition index, that was a sum over neighbours with each term depending only onthe actual tree, the neighbour, and the distance between them. In this way we haveactually de�ned a mrf for the diameters. The energy for a speci�c node (tree) giventhe other nodes is the ci!6The lattice is not a perfect lattice, e.g. because the number of trees in a row vary. We use aneighbourhood structure that looks as much as possible as a lattice.7Wälder and Stoyan [WS96] outlines several problems when variograms are used to make modelsin �point process statistics� instead of the usual context of geostatistics. These problems are the samein the mrf setting. The problems arise especially when there is competition between the points.14



Survival of the Fattest?These considerations seem to imply that the problem of de�ning a good ci is the sameas making a good model for the simultaneous distribution of the diameters at a �xedtime point and then �nd the conditional probabilities. This idea has not been pursuedfurther here.4 ResultsIn this section we present the results from the analyses of the model with the likelihoodfunction (2) and a cloglog-link for the discrete time hazards �s;t(X(t�1)) as describedin Section 3.We use the diameter (dbh), the basal area (ba), and the competition indices basedon the diameter (cidbh) and on the basal area (ciba) as covariates in our model. InSection 2.3 it was noted that Figure 16 and 17 suggest that the dead trees are a bitmore likely to be in the east side of the experiment. For this reason we also includethe coordinates x and y as well as their product8 as covariates.The results from the analysis show the consistent picture that the variables dbh, com-petition index based on basal area, and x and y coordinates are signi�cant, whereas thevariables basal area and competition index based on dbh are non signi�cant. Likewisethe product xy of the x and y coordinates can be removed from the model.The test probability of removing the product xy from the full model is 53%. It seemsnatural that one of dbh and basal area, as well as one of competition index based ondbh and basal area should be in the �nal model. The test probabilities in Table 3support the impression that the model with dbh and competition index based on basalarea gives the best description of the data.ciba cidbhbasal area 12% <0.1%dbh 50% 10%Table 3: Test probabilities for the model including the variables in thetable as well as the x and y coordinates against the full model.Table 4 shows the parameter estimates. The time parameters are not that interestingper se, but it is worth noting that the values get larger as time goes by. This is becausethe probability of dying increases with time which is immediately seen from Table 2.The interpretation of the parameters for the covariates is best done in the underlyingCox proportional hazards model.Table 5 shows for the four covariates the factor that should be multiplied on the con-tinuous time baseline hazard with a certain increase in the variable and the con�denceinterval for these values. These values are based on Table 4, and e.g. the value for dbhis exp(�50�0:023) = 0:32 and the con�dence interval is the con�dence interval for theparameter transformed with the exponential function. It is a part of the underlyingCox model that this factor depends only on the increase and not on the current valueof the covariate.It is seen that whenever the diameter is increased by 5cm the hazard is only one thirdof what it was previously. This means that the larger the tree is the smaller is the risk8The product xy of the coordinates can be thought of as a �pseudo covariate� that models a sortof dependence between the x and y coordinates. 15



Survival of the Fattest? Variable Estimate Std. Errortime1 -3.90 0.80time2 -2.29 0.57time3 0.41 0.45time4 2.94 0.49dbh 0.023 0.0028ciba -0.024 0.0060x -0.026 0.0076y 0.016 0.0064Table 4: Parameter estimates.Variable Increase Factor Con�dence intervaldbh 5cm 0.32 [0:24; 0:42]ciba 10 1.28 [1:13; 1:43]x 10m 1.30 [1:12; 1:51]y 10m 0.85 [0:75; 0:97]Table 5: Factor to multiply on the baseline hazard in the Cox proportionalhazards model.of dying. The hazard increases with almost one third when the ci is increased by avalue of 10. In Section 2.3 it was noted that the dead trees seem more dominant inthe east part of the experiment. This is con�rmed by the estimate of factor for the xparameter � when we go 10m more to the east, then the hazard is increased by onethird. The estimate of a decrease of the hazard by 15% when we go 10m north is notthat obvious from the plots in Appendix B. On the other hand the test probability ofremoving the y variable is around 1.2% so this e�ect is not highly signi�cant.The choice of radius 4m in the de�nition of the competition index is somewhat ar-bitrary, although the discussion in the end of Section 3.5 suggests a relatively smallradius. However, the same analyses as above were also carried out with a radius of15m in the de�nition of the ci. The test probabilities and the parameter estimates arealmost the same and the same variables are signi�cant. However, there is a tendencythat the estimates of the parameters for the two competition indices are about 1=3 ofthe value when the competition indices are de�ned with a 4m radius. This means thatthe factor above for the ci should be raised to a power of 1=3 and thus the factor willbe closer to one.5 Discussion and ConclusionIn the above analyses we have not talked about model checking and goodness of �ttests. The underlying Cox model make two assumptions:� The hazards are proportional for all individuals.� The hazard is log-linear in the covariates.We cannot really check the �rst assumption in this data set since we do not havedeaths on many time points. Table 2 shows that the vast majority of deaths fall in the16



Survival of the Fattest?last two time intervals so in fact we almost only observe the dead time to be in one ofthree intervals.The log-linearity would usually be checked by some plots, but it is not possible tomake any good diagnostic plots because we only have one 0-1 observation for eachcombination of the covariates. Instead the model can be checked by introducing afactor with groups of the continuous covariates which we subsequently try to removein a test. Thus the covariates dbh, ciba, cidbh, x, and y, are grouped into factors at 4levels. The levels are chosen to divide the covariates at the quartiles9. The goodnessof �t test that removes all the factors have a test statistic with value 34.2 with 15 df.This gives a test probability of 0.3% which would normally be regarded as signi�cantand we must reject our initial model. However, it is not extremely signi�cant and in astepwise test with removal of the factors one after one, no one of the tests have a testprobability below 2.6% if the tests are done in a �clever order�. If the tests are done ina �random� order the lowest test probabilities are around 1% and there are several high(>10%) test probabilities. As already mentioned the distribution of the competitionindices is highly skewed with a heavy right tail and this might also a�ect the behaviourof the regression estimates. All in all I believe that the results from the analyses arereliable, although further investigation of the behaviour of the model should be carriedout. These investigations could be on the in�uence of the highly skewed distributionsof the competition indices, and over-dispersion models as e.g. random e�ects modelsconsidered in [SJ95]. Unfortunately the time for this project do not allow me to pursuethese important matters further.We also assumed that the trees were independent in the following period given thecurrent status. This assumption is obviously not ful�lled since there is an ongoingcompetition between the trees, but it su�ces as a simple approximation. The validityof this approximation might perhaps be investigated by some sort of permutationtest. In general the �level� at which some sort of independence is assumed mightbe investigated further together with the consequences for the model as a whole. InRathbun and Cressie [RC94] they �nd in a growth model that it is satisfactory todescribe the increments as independent, whereas Penttinen et al. [PSH92] �nd in twoof three examples that the size of trees at a �xed time point can be described asindependent. One of the two examples with independent sizes in [PSH92] is in athinned plot.In this report we use a model for the discrete time hazard to describe the discretesurvival times. These discrete survival times could be considered as ordinal data anda common regression model for ordinal data is the McCullagh model as describedin [McC80], [FT94, Sec. 3.3.1] or [MN89, Sec. 5.2.2]. These models are not suitable forour purpose because they do not allow the incorporation of time dependent variablesin any obvious way, however.It would have been interesting to study the e�ect of the dead trees on the living treesand in e.g. [TB89] the dead trees are included in the calculation of a special ci. Butas noted almost all the trees died in the last two periods so it would just make sensein the last period and we have not gone further into this.As seen in Figure 8 it seems like the diameter increment is approximately zero for thetrees that die, so it is tempting to use the diameter increment as a covariate. This isnot practical, however. We cannot use the increment in the time period going back to9This is the reason the the covariate basal area is not grouped. Such a factor would be identicalto the factor based on dbh since basal area is a monotone transformation of dbh.17



Survival of the Fattest?the previous measurement because we must use the measurement at the present timepoint to �nd this number. This means that we use a measurement taken at the presenttime point to predict the course of the tree in the previous period. In mathematicalterms the covariate process is no longer predictable. In the present data set we haverelatively few time points and it is not realistic to use e.g. the diameter incrementduring the period between the former two measurements as a covariate.We de�ne the neighbours in the de�nition of the ci to be all the trees within a cer-tain radius and as already noted this is probably not very di�erent from taking then nearest neighbours because the trees are placed regularly. The considerations inSection 3.5 suggest that this radius should be relatively small, but still the choice of4m is somewhat arbitrary. It would be desirable to estimate this radius from data.Another idea would be to de�ne several competition indices based on trees in di�erentdistances intervals, e.g. 0�2m, 2�4m, etc. Hegyi [Heg74] also uses a small distance of10ft, whereas Rathbun and Cressie [RC94] uses a rather large distance of 30m or evenlarger in their de�nition of a ci.In the analyses we have not worried about border e�ects. In the border of the plot,Sitka spruce of the same age and at the same spacing is planted, and we shouldsomehow correct the competition index near the borders to re�ect this. Note thatnear the borders the behaviour of the ci would depend on whether we included treeswithin a certain radius or we include the n closest trees. I don't think the questionabout border corrections is essential for the validity of the results.The dependence of the hazard on the x and y coordinates is probably due to the slopeof the ground. It might be that more of the �weak� trees in the low north and westpart of the experiment died before 1975, so that more weak trees are present in theeast and south part. The death of trees in the north and west part of the experimentcan e.g. be caused by more frost in the lower part or di�erences in the ground waterlevel.The general considerations about competition indices in Section 3.5 suggest that agood competition index is approximately the same as specifying a good model forthe sizes of the trees at a �xed time point. I have not found any references to thisway of thinking of competition indices and it would be worth investigating further.With examples from forestry Penttinen et al. [PSH92] demonstrates several summarystatistics and graphs in the context of marked point processes that say somethingabout the spatial distribution of the sizes of trees. See also [WS96] for comments onthe use of usual spatial models in a forestry situation.In most of the models in [RC94] they treat the trees in three di�erent size classes basedon the diameter. We have not done this here and I suspect that they must do it thisway instead of just looking at the diameters because they are not looking at even agedstands as I do.The basic measurement on the trees is the diameter at breast height, dbh. We also usethis measurement as basal area (/ dbh2) and could use it as volume raised to the power�, dbh�. In a similar way the competition indices could be based on dbh� for a general�. We found that we should use the dbh measurements and the ci based on the basalarea. In [TB89] they make a growth model and conclude that the competition indicesbased on diameters always were superior to those based on basal area. The situationin Rathbun and Cressie [RC94] is a little di�erent. They investigate an uneven agedstand and model both germinations, growth and deaths of trees. In the study of deathsthey conclude that the competition from the neighbours does depend on their number18



Survival of the Fattest?and distances only, and not the size of those neighbours. In the growth model they alsoconclude that a competition index de�ned on the basis of diameters and the distancein the same way as mine is the best. So these two references �nd that competitionindices based on diameters are better than competition indices based on basal area,which I �nd the best. I cannot give any explanations for this, but only guess thatit might be due to the di�erent nature of the models; growth models versus survivalmodel.It is of interest to make general non linear regression models where we estimate theparameters � and �. This would be relatively straight forward for the � parameter,but computationally heavy for the � parameter since we need to recalculate the ci foreach new value of � in an iterative estimation procedure.In the de�nition of the ci we divide by the distance, but could as well divide byd(s; ~s) . The case  = 2 appears often in physics and Tomé and Burkhart [TB89] triesthis among other variants, but they do not �nd conclusive evidence on which value of to use so they stay with  = 1. In [RC94] they also �nd the use of  = 1 to besatisfactory. We could estimate the  parameter in the same way as the � parameter.An alternative to the non linearity in � is to use log(dbh) as a covariate which wouldcause � to enter the model in a linear way.The growth model by Pukkala [Puk89] models the increment in basal area and notthe increment in dbh. Pukkala concludes that �The main reason for the good degreeof determination is that the models were for basal area growth instead of diametergrowth, and basal area growth correlated very closely with the diameter.�. We couldtake dbh�t � dbh�t�1 as the response and again be interested in estimation of �, whichwould probably be non trivial.If we should answer the question �survival of the fattest?� in the title of this report ina short way, the answer must be yes. It is evident that it is the small trees and thetrees with stronger neighbours that die �rst.AcknowledgmentsI would like to thank Antti Penttinen for his suggestion to use �energy marks� as a basisfor the de�nition of competition indices and Anders Brix for many helpful discussionsduring the work.References[ABGK93] Per Kragh Andersen, Ørnulf Borgan, Richard D. Gill, and Niels Keiding,Statistical models based on counting processes, Springer Series in Statistics,Springer-Verlag, 1993.[EW95] Jens Elberling and Ulrik Winther, Noter til træmåling, teaching notes,Institut for Økonomi, Skov og Landskab, Sektion for Skovbrug, 1995.[FT94] Ludwig Fahrmeir and Gerhard Tutz, Multivariate statistical modellingbased on generalized linear models, Springer Series in Statistics, Springer-Verlag, 1994.
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Figure 4: Positions in terms of row and number. L=larch, S=Sitka spruce,B=birch.
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Figure 5: Positions of trees. The 41 de�ned positions are marked with a�lled box.
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Figure 6: Positions of the fallen trees in the windfall are marked by �lledboxes. Only the positions of Sitka spruce are plotted.
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Figure 7: Positions of height trees are marked by �lled boxes. Only thepositions of Sitka spruce are plotted.
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Figure 10: Diameters 1975, separated into species.
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Figure 13: Diameters at positions, 1975. Dead trees are marked with dotsof a �xed size. Only Sitka spruce.
32



Survival of the Fattest?

x

y

-40 -30 -20 -10 0

0
10

20
30

40
50

•

•
•

1979, diameter of circle proportional to dbh
 dead trees small filled circles

Figure 14: Diameters at positions, 1979. Dead trees are marked with dotsof a �xed size.
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Figure 15: Diameters at positions, 1984. Dead trees are marked with dotsof a �xed size.
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Figure 16: Diameters at positions, 1990. Dead trees are marked with dotsof a �xed size.
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Figure 17: Diameters at positions, 1995. Dead trees are marked with dotsof a �xed size.
36



Survival of the Fattest?

x

y

-40 -30 -20 -10 0

0
10

20
30

40
50

•

•

•

•
•

•
•

1979, diameter of circle prop. to dbh increment

Figure 18: Map of increments between year 1979 and 1975. Small �lledcircles are negative increments, small �lled squares are zero increments.
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Figure 19: Map of increments between year 1984 and 1979. Small �lledcircles are negative increments, small �lled squares are zero increments.
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Figure 20: Map of increments between year 1990 and 1984. Small �lledcircles are negative increments, small �lled squares are zero increments.
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Figure 21: Map of increments between year 1995 and 1990. Small �lledcircles are negative increments, small �lled squares are zero increments.
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Figure 22: Plots of increment versus dbh.
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Figure 23: Plot of the heights versus the diameter at breast height, dbh,in the left column, and log(dbh) in the right column.42


