
Models for point processes observedwith noiseBy JENS LUNDDepartment of Mathematics and Physics, Royal Veterinary and AgriculturalUniversity, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmarkjlund@dina.kvl.dkand MATS RUDEMODepartment of Mathematical Statistics, Chalmers University of Technology andGothenburg University, 41296 Gothenburg, Swedenrudemo@math.chalmers.seNovember 1, 1999SummaryConsider a pair of point processes, X and Y , where X is regarded as a `true'point process and Y is an imperfect observation of X. For the transforma-tion from X to Y , we consider a number of disturbance mechanisms coveringrandom thinning, displacement, censoring of the displaced points and super-position of extra points. We present the conditional likelihood of Y given X.When both point processes are observed the likelihood may be used for in-ference about the disturbance mechanisms. The likelihood is a sum, typicallywith very many terms, and we discuss an approximation with a small numberof terms. The results are applied to an example, where X denotes a set of1



2`true' positions of tree tops, and Y denotes tree-top positions estimated bytemplate matching in a digital image obtained by high-resolution aerial pho-tography. The parameters governing the various disturbance mechanisms areestimated from the conditional likelihood.Some key words: Censoring of point processes; Conditional likelihood; Imagedata; Incomplete observation; Matching of point sets; Random displacement;Superposition; Thinning. 1. Introduction1�1 BackgroundRandom displacement, thinning and superposition are well-known operations onpoint processes; see Daley & Vere-Jones (1988) and Stoyan, Kendall & Mecke (1995).An important problem is to decide when the distribution type, in particular, thePoisson process, is preserved under these operations. A related problem is to deter-mine when iteration of these operations with suitable scaling gives a speci�c process,typically the Poisson process, as a limit.In the present paper we will instead look at these mechanisms as disturbancesof a point process, that is as elements in models for incomplete observation of apoint process. This type of modelling was used in Dralle & Rudemo (1997), whereincomplete observations of tree positions from aerial photography data were studied.The combined e�ects of thinning, systematic and random displacement, censoringthrough displacement out of the study area and superposition of additional points,called `ghost points', were investigated. The statistical method used was iterativeleast squares estimation combined with a `most probable' pairing of true and ob-served points. Here we will study the various disturbance mechanisms by use ofmaximum likelihood estimation. This involves derivation of the conditional likeli-hood function for the observed process given the true process; see Theorem 1 in� 2. Section 3 covers simpli�cations of the general disturbance model, such as puredisplacement models, spatially homogeneous noise models and cluster processes.



3The conditional likelihood for the observed point process contains a very largenumber of terms, each term corresponding to a speci�c mode of generation for the setof observed points. The model may be viewed as a missing-data problem where eachterm speci�es the origin of each observed point as either a displacement of one of theoriginal points or as an additional point. It is well known that statistical inferencefor missing data may be complicated, and the EM algorithm is one way of handlingmissing data (McLachlan & Krishnan, 1997). However, the EM algorithm does notseem feasible in our case because of a complicated E-step, and in � 4 we studyapproximations of the likelihood based on a small number of comparatively largeterms. We suggest an iterative procedure for �nding the largest terms, includinga starting procedure and search among terms similar to those currently consideredaccording to speci�ed `neighbour' relations. Other computational considerationsconcern approximations close to the boundary of observations.Likelihood estimation is applied to estimation of tree-top positions from an aerialphoto in � 5. Rather than use the kernel smoothing method of Dralle & Rudemo(1996, 1997) in the �rst step to �nd candidate tree positions, we employ the templatematching method described in Larsen & Rudemo (1998) suitable also for aerialphotographs obtained under o�-nadir viewing angles. Point processes and markedpoint processes have a well established tradition in forestry (Penttinen, Stoyan &Henttonen, 1992), although data have usually been acquired by ground-based �eldmeasurements. 1�2 Basic assumptions and notationLet Y be an imperfect observation of a point process X. We assume that X andY are point processes on a subset A of d-dimensional Euclidean space Rd with a�nite number of points, X = fXi : i 2 Mg, M = f1; : : : ; mg, Y = fYj : j 2 Ng,N = f1; : : : ; ng. Assume further that A is bounded with a positive d-dimensionalvolume jAjd. Suppose that Y is generated from the X-process by the followingdisturbance mechanisms.



4(i) Thinning. Each point Xi; i 2 M , is thinned with probability 1 � p(Xi) andretained with probability p(Xi). If an X-point is thinned, then there will notbe any corresponding Y -point. Thinnings are assumed to be independent fordi�erent points.(ii) Displacement. For each remaining point Xi a corresponding Y -point is gen-erated by displacement to a position with probability density k( � jXi) withrespect to Lebesgue measure on Rd . Given X, the displacements of di�erentpoints are independent, mutually and of the thinnings.(iii) Censoring. The displaced points are observed if they are within the observationregion A; otherwise they are censored and not observed. Thus censoring of anunthinned point generated by Xi occurs with probability RAc k(yjXi) dy. HereAc denotes the complement Rd n A of the set A.(iv) Superposition of ghost points. In addition to the points generated as describedabove we have superposition of extra 'ghost' points. These points are assumedto arise from a Poisson process on A with intensity g( � jX), where X, asabove, denotes the entire X-process including thinned points. Given X, theghost points are assumed to be independent of thinning, displacement andcensoring.The points generated from X by the combination of thinning, displacement, cen-soring and superposition form the Y -process, which is thus restricted to the setA. For a Borel set B, we let Y (B) denote the number of Y -points in the set B, thatis we use the same symbol both for the point process and the associated countingmeasure. Furthermore, jSj will denote the number of elements in a �nite set S.With this notation we thus have Y (B) = jfj 2 N : Yj 2 Bgj. Furthermore, we letP(M;M 0) denote the set of one-to-one mappings � : M !M 0 for two �nite sets Mand M 0 with the same number of elements.



52. The conditional likelihoodThe conditional likelihood L(Y jX) of a point process Y observed on a bounded setA � Rd , given another point process X, is the Radon-Nikodym derivative of theprobability measure of Y given X with respect to a reference measure. We willlet the reference measure be the probability measure for a Poisson process with aconstant intensity �0(y) = 1 for y 2 A. In the following theorem we assume forsimplicity that the functions g and k are continuous, although this condition can beweakened.Theorem 1. Let X and Y be two �nite point processes speci�ed as in � 1�2 on abounded set A. Suppose that g(yjX) and k(yjXi), i 2 M , are continuous functionsof y 2 A. Then the conditional likelihood of Y given X isL(Y jX) = exp�jAjd � ZA g(yjX) dy� XM1�MN1�NjM1j=jN1j X�2P(M1;N1)L1L2L3; (1)where L1 = Yi2M1 p(Xi)k(Y�(i)jXi);L2 = Yi2MnM1�p(Xi) ZAc k(yjXi) dy + 1� p(Xi)� ;L3 = Yj2NnN1 g(YjjX);and the reference measure corresponds to the Poisson process on A with intensity 1.For the proof see the Appendix.3. Submodels of the general model3�1 General considerationsIn most applications the model described in � 1�2 is too general to be really usefuland we will describe some special cases of it. First, it is often reasonable to assume



6that the probability of thinning is constant on the set A, p(x) = p, and we will doso in the sequel.Secondly, the displacement distribution with density k( � jXi) is frequently chosento be centred around Xi+�, where we may interpret � as a systematic error made inthe observations. A simple choice of the displacement distribution is a d-dimensionalnormal distribution. 3�2 The pure displacement modelAssume that p = 1 and that g( � jX) = 0. This means that we do not have any extraghost points, and that we observe the randomly displaced X-points, provided theyare not censored. 3�3 Homogeneous superposition noiseAn important special case for the intensity of the ghost points is that of homogeneousnoise, g( � jX) = �. Then the likelihood function (1) simpli�es toL(Y jX) = XM1�MN1�NjM1j=jN1j X�2P(M1;N1)T (M1; N1; �); (2)with termsT (M1; N1; �) =pjM1j �jNnN1j exp f(1� �)jAjdg (Yi2M1 k(Y�(i)jXi)) Yi2MnM1�p ZAc k(yjXi) dy + 1� p� : (3)
3�4 A cluster Cox processWhen the intensity g for the ghost points depends on the X-process, these pointscontain information about X. A speci�c example is when all the original X-pointsare thinned, i.e. p = 0, so we only observe the ghost points. Assume further that eachXi gives rise to Ni o�-spring points, with Ni � Pof�(Xi)g. Assume also that, con-ditional upon X, all the Ni's are independent, all o�-spring points are independent,



7and the points generated by Xi are distributed according to a probability densityh( � jXi). Conditional upon X the Y -process is an inhomogeneous Poisson processwith intensity g(yjX) = �(X1)h(yjX1) + : : :+ �(Xm)h(yjXm), and the Xi's will becluster centres. Conditional further on jY j = n, the distribution of the Y -points maybe regarded as a mixture, and estimation of the cluster centres in a mixture distri-bution is considered for instance in Titterington, Smith & Makov (1985, pp. 113�4).Considering X as random, we note that the Y -process is a Cox point process. Inour forestry example a cluster may be generated for each tree as large branches mayunder certain conditions produce re�ections similar to tree tops.4. Approximate likelihood analysis4�1 OverviewIn theory it is simple to compute the likelihood function (2), but even for modest�sized datasets the number of terms in the sum becomes enormous and it is impossibleto calculate all the terms within a reasonable time. Furthermore, the orders ofmagnitude of terms in the sum are very di�erent, and we have to be careful withnumerical computations where we add a large number of small terms.We now describe algorithms for �nding approximations of the likelihood functionby focussing on the values of a few large terms. In particular, we consider algorithmsfor the choice of r terms in (2) for a �xed small r. In the example in � 5 the likelihoodfunction contains more than 1050 terms, whereas we �nd a reasonable approximationof the likelihood function with r = 8 terms.For notational simplicity we shall in the sequel consider point processes in two-dimensional space, although the methods can be generalised to d dimensions ina fairly straightforward manner. We shall also assume that the density functionk( � jXi) for point displacement from Xi, cf. (3), is a two-dimensional normal densitywith mean vector Xi + �, with a systematic displacement � = (�1; �2), and withvariances and correlation, �21, �22 and �, that do not depend on Xi. Furthermore, weassume the homogeneous noise model from � 3�3.



8We refer to as a `state' a combination s = (M1; N1; �) that we sum over in(2). The crucial issue in our approximate likelihood computation is to �nd states(M1; N1; �) such that the corresponding terms T (M1; N1; �) give large contributionsto (2). We try to achieve this with a deterministic, iterative algorithm which consistsof a starting procedure for �nding an initial set of states together with local maximi-sations over suitably chosen neighbourhoods of states until no further improvementis obtained. In the sequel we will study the following: two approximations of theintegral over Ac in (3) with emphasis on points close to the boundary of A; neigh-bours of a state (M1; N1; �) to be considered in the search for terms that give largecontributions to (2); an iterative deterministic procedure for �nding an optimal setof r states for the likelihood approximation and simultaneously �nding approximatemaximum likelihood estimates of parameters; and a procedure for �nding an initialset of r candidate states for the iterative procedure.4�2 Two approximations for points close to boundariesFor most points Xi it turns out that they are so far from the boundary of theobservation area A that we safely can use the simplifying approximationZAc k(yjXi) dy = 0: (4)In the �rst approximation of (3) we assume that this holds for all X-points, andthus replace (3) byT (M1; N1; �) = pjM1j (1� p)jMnM1j �jNnN1j exp f(1� �)jAjdg (Yi2M1 k(Y�(i)jXi)) : (5)For s = (M1; N1; �) note that (5) is maximised as a function of the parameter vector� = (p; �; �1; �2; �1; �2; �) (6)by �̂(s) = (p̂; �̂; �̂1; �̂2; �̂1; �̂2; �̂), where p̂ = jM1j = jM j, �̂ = jN n N1j = jAjd, and(�̂1; �̂2; �̂1; �̂2; �̂) are the standard maximum likelihood estimates of the parametersin a two�dimensional normal distribution based on the sample (Y�(i)�Xi; i 2M1).



9In the second approximation of (3) we assume that the boundary, viewed locallyfrom Xi, can be approximated by a straight line. More precisely, let di denote thedistance from Xi to the boundary, and introduce local coordinates (Vi1; Vi2) in thedirection of the nearest point on the boundary and orthogonal to it. We may usethe approximation ZAc k(yjXi) dy = P�(Vi1 > di); (7)which can be expressed in terms of the last �ve parameters of the parameter vector� in (6), the standard one-dimensional normal distribution function and di. Formost points Xi the right-hand side of (7) will still be e�ectively zero, but for pointsclose to the boundary it gives a better approximation than (4). With (7) we do notobtain closed-form expressions for the parameter vector that maximises (3), as wedid with the approximation (4).4�3 Neighbours of a stateFor a state (M1; N1; �) we say that (M 01; N 01; �0) is a neighbour state if it is obtainedfrom (M1; N1; �) in one of the following �ve ways.(a) Addition of a pair of X- and Y -points: M 01 = M1 [ fi0g, where i0 2 M nM1,N 01 = N1 [ fj 0g, where j 0 2 N nN1, �0(i) = �(i); i 2 M1, and �0(i0) = j 0. Thenumber of such neighbours is jM nM1j jN nN1j.(b) Removal of a pair of X- and Y -points: M 01 = M1 n fi0g, where i0 2 M1,N 01 = N1 n fj 0g, where j 0 2 N1, �0(i) = �(i); i 2 M 01 and �(i0) = j 0. This canbe done in jM1j = jN1j ways.(c) Swapping an X-point: M 01 = (M1nfi0g)[fi00g, where i0 2M1 and i00 2M nM1,N 01 = N1, �0(i) = �(i); i 2M1nfi0g and �0(i00) = �(i0). There are jM1j jM nM1jsuch neighbours.(d) Swapping a Y -point: M 01 = M1, N 01 = (N1 n fj 0g) [ fj 00g, where j 0 2 N1 andj 00 2 N n N1, �0(i) = �(i); i 2 M1 n fi0g, where �(i0) = j 0 and �0(i0) = j 00.Swapping a Y -point can be done in jN1j jN nN1j ways.



10(e) Exchange among two pairs: M 01 = M1, N 01 = N1, �0(i) = �(i); i 2M1 n fi0; i00g,where i0 2 M1 and i00 2 M1, i0 6= i00, �0(i0) = �(i00) and �0(i00) = �(i0). Thenumber of such neighbours is jM1j (jM1j � 1)=2.We note that being a neighbour is a reciprocal relation.In our computations in the example below we will consider a reduced set ofneighbours of a state s = (M1; N1; �), obtained as follows.(a) Addition of a pair: for an added pair with Xi0 as X-point we only consider thatunpaired Y -point which is closest to Xi0 ; there are jM nM1j such neighbours,or none if all Y -points are already paired.(b) Removal of a pair: no restriction; there are jM1j such neighbours.(c) Swapping an X-point: when swapping an X-point Xi0 in a pair we consideronly replacing it with the unpaired X-point which is closest to the correspond-ing Y -point; there are jM1j such neighbours, or none if allX points are alreadypaired.(d) Swapping a Y -point: when swapping a Y -point Yj0 in a pair we consider onlyreplacing it with the unpaired Y -point which is closest to the correspondingX-point; there are jN1j such neighbours, or none if all Y -points are alreadypaired.(e) Exchange among two pairs: for a pair with X-point Xi0 we consider only theswap involving the pair with X-point closest to Xi0 ; there are at most jM1jsuch neighbours.Note that the total number of elements in the reduced set of neighbours of astate is at most jM j+ 3jM1j.



114�4 An iterative likelihood maximisation procedureLet T (s; �) denote the term (5) with s = (M1; N1; �) and � given by (6). Considera set S of states and the truncated likelihoodL(S; �) =Xs2S T (s; �): (8)Our iterative procedure for �nding a good approximation (8) of (2) with a small�xed number r of states in S involves the following steps.Step 1. Find an initial candidate set S0 with r states and a corresponding maximisingparameter vector �0 as described below in � 4�5.Step 2. Let St be our candidate set of states at stage t, t = 0; 1; : : : , with acorresponding maximising parameter vector �t. To �nd the updated set St+1we proceed as follows. Consider all states which are either contained in Stor are members of the reduced neighbour sets, as described in the previoussection, of any state in St. This augmented set of states is denoted by S 0t. LetSt+1 consist of those r states s in S 0t that have the largest values of T (s; �t).Let �t+1 be the �-value that maximises L(St+1; �), obtained by a quasi-Newtonmethod with �t as starting value.Step 3. If St+1 = St or, bearing in mind �nite numerical accuracy, if L(St+1; �t+1) �L(St; �t) + � for a given small � > 0, cf. (10) below, we stop and chooseL(St+1; �) = Xs2St+1 T (s; �) (9)as our likelihood approximation and �t+1 as our approximate maximum likeli-hood parameter estimate. Otherwise the previous step is iterated.From the above description of the basic iteration, Step 2, it follows that L(St+1; �t) �L(St; �t) and L(St+1; �t+1) � L(St+1; �t). This implies that the algorithm is mono-tonic: L(St+1; �t+1) � L(St; �t): (10)



124�5 Starting procedureWe choose an initial set of r states by use of the following `greedy' algorithm similarto that used in Dralle & Rudemo (1997). From all X-points we let circles growsimultaneously at the same speed. When a circle hits a Y -point that has not beenhit before it is paired with the corresponding X-point, and the growth of this circleis stopped. After the kth hit we assemble the k pairs thus obtained in a statesk = (M1k; N1k; �k), for each k = 0; : : : ; k1, where k1 = min(m;n). Assume �rstthat k1 � r. As initial set S0 of states we choose those r states sk that have thelargest values of sup� T (sk; �), k = 0; : : : ; k1. Let �0 be the �-value that maximisesL(S0; �). We �nd �0 by a quasi-Newton method with �̂(s�) as starting value, where�̂(s) is de�ned immediately after (6), and s� is the state among sk, k = 0; : : : ; k1,that maximises sup� T (sk; �).In case r > k1 we adjust the algorithm in a natural way. We start with theavailable k1 states from the starting procedure, and then expand the number ofstates in each step of the algorithm in � 4�4, until we have r states among theneighbouring states.The starting procedure �nds pairs of X- and Y -points that are close together.From an intuitive point of view this is reasonable, provided that the displacementsare typically small compared to the distances between neighbouring X-points, andthat the intensity of the ghost points is not so high that they are likely to enterbetween the true and the displaced points.5. Example: Tree top positions from an aerial photograph5�1 Data: `true' tree top points and points from template matchingPanchromatic images obtained from a �ight 560 m above a thinning experimentin Norway spruce, Picea abies (L.) Karst., have been studied in Dralle & Rudemo(1996, 1997) using kernel smoothing, which proved to be a useful method for imagesobtained close to the nadir. For o�-nadir images a template matching method turnedout to be more e�ective; see Larsen & Rudemo (1998), where optimal templates were



13obtained for di�erent geometries of image acquisition. Figure 1(a) shows an imagewith trees lit from the side with a ground-projected pixel size of 0:15� 0:15m2, andthis image is the source of the Y -points analysed in the present paper.FIGURE 1 ABOUT HEREThe `true' X-points were obtained in the following way. For all trees in thesubplot delineated in Fig. 1(a) tree base positions measured in the �eld were ex-trapolated to estimated tree top height and superimposed on the image to yieldan initial estimate of the true tree top positions as described in Dralle & Rudemo(1997). These positions were adjusted by manual inspection of the images to correctfor errors introduced by deviations in the tree height estimates, variations due towind and inaccuracy in the image recti�cation. The resulting tree top positions,X1; : : : ; Xm, m = 171, coincide with the centres of the circles shown in Fig. 1(b).FIGURE 2 ABOUT HEREThe Y -points were obtained by matching a template constructed from a singlelight-re�ection model, indicated in Fig. 2(a), adapted to the positions of the cameraand light sources, made up of both the sun as a point source and a set of minorsources distributed over the hemisphere and representing di�use light. The resultingtemplate, shown in Fig. 2(b) bounded by an ellipse, was moved pixel-by-pixel overthe image. Local maxima of the correlation between template and image pixel greylevels were considered as candidate positions of tree tops. The optimal translationalong the tree axis, size and eccentricity of the bounding ellipse was obtained inLarsen & Rudemo (1998), and the resulting optimal boundary is shown in Fig. 2(b).The ground-projected size of the half axes of the optimal ellipse are 1.58 m and 1.42m. Altogether there were 570 positive local correlation maxima. The histogram ofthese correlation maxima, shown in Fig. 3, indicates a bimodal distribution, where,roughly, large maxima correspond to tree tops and small maxima correspond tosuperimposed noise. Three sets of Y -values, Y1; : : : ; Yn, were studied correspondingto the correlation maxima above or equal to varying limits r0. These limits werechosen to obtain approximately n = m, n = 1:2m and n = 1:4m. Using the limits



14r0 = 148/255, r0 = 127/255 and r0 = 110/255 we obtained n = 171, n = 206 andn = 243, respectively. The Y -points in the dataset with n = 206 points are shownas black dots in Fig. 1(b).FIGURE 3 ABOUT HERE5�2 Results from approximate likelihood analysesWe use the above set of X-points and the set with 206 Y -points as the basic datasetsin this section. To describe the data we consider the model in � 3�3 with approx-imation (4), implying that each term in the likelihood function has the form (5).Thus we assume that the thinning probabilities and the intensity of the Poissonnoise are homogeneous on the set A, that the displacement distribution k is a two-dimensional normal distribution, and that the probability of censoring of a displacedpoint is negligible.FIGURE 4 ABOUT HEREFigure 4 shows the value of the term log sup� T (sk; �) as a function of the numberk of pairs in the state sk for the starting procedure in � 4�5. It is seen that the size ofthe terms considered in the starting procedure can vary considerably. The suddendecrease for large k appears when the algorithm starts to pair X- and Y -points thatare far apart. The subsequent iterative algorithm (� 4�4) tends to select terms amongthe neighbours of the largest and second-largest terms of the starting procedure, andthen exhibits fast convergence, typically in two or three steps.FIGURE 5 ABOUT HEREOur algorithm does not prescribe how to choose the number r of states in S usedin the approximation of the likelihood function. We have run the algorithm withr = 1; : : : ; 16 terms and Fig. 5 shows the value of the approximation to the log-likelihood function as a function of the number of terms in the approximation. Theimprovement from adding a term is largest when few terms are already included.We have chosen r = 8 terms in the approximation in the following computations asthis seems, from Fig. 5, to give an adequate approximation.



15TABLE 1 ABOUT HERETable 1 shows the value of T (s(i); �̂)=T (s(1); �̂), i = 1; : : : ; 8, for the terms eval-uated in the likelihood approximation and the number of pairs in each of the cor-responding states. The terms are sorted in order of decreasing contribution to thelikelihood function. The di�erences between the states of the eight terms are small.Compared to the state of the leading term the other seven terms are obtained byswapping a Y -point, removal of a pair, addition of a pair, or a combination of twosuch operations.Table 2 shows the estimated parameters based on the eight terms as well as theirestimated standard deviations found by numerical di�erentiation of the approximatelikelihood function. The estimate p̂ = 0:941means that approximately 0:941�171 =160:9 out of the 171 X-points are matched.TABLE 2 ABOUT HEREThe size of the estimated standard deviations seem quite reasonable. We would,for instance, expect the standard deviation of the estimate of �1 to be aroundf1:004=(0:941 � 171)g 12 = 0:079 if the estimates for the displacement parameterswere obtained in a model with independent identically distributed normal observa-tions.As we have an approximation of the likelihood function we are also able toperform approximate likelihood ratio tests. Testing, for instance, the hypothesis(�1; �2) = (0; 0) we �nd the test statistic �2 logQ = 17:85 with an approximatep-value of 0.00013 from a �2-distribution with two degrees of freedom, and thehypothesis is rejected. Further testing shows that we can accept �2 = 0 with p-value 0.47, but not �1 = 0, in agreement with Table 2.TABLE 3 ABOUT HERETable 3 shows parameter estimates obtained when the number of Y -points isvaried as described in the end of � 5�1. The change in �̂ is not so interesting per seas it is essentially determined by the surplus number of Y -points. Note that the p̂estimate increases with an increasing number of Y -points, and that this increase is



16largest when the number of Y -points increases from 171 to 206. The increase in p̂is accompanied with an increase in the variance of the displacement, but generallythe parameters of the displacement distribution seem fairly stable when the numberof Y -points varies. 6. Discussion6�1 Spatial point processes with noiseModelling random processes with noise has focussed mainly on additive models,which are particularly tractable for Gaussian processes. Models for point processesin one dimension have also been thoroughly treated, for instance by martingalemethods. However, incompletely observed spatial point processes, such as pointprocesses from images, as in the example of the present paper, have received lessinterest; see however Young et al. (1998) for template matching of cells in digitalmicroscopy, and van Lieshout (1994) for a Bayesian analysis of a scene with a randomset of objects generated by a point process.6�2 Computational considerationsOnly deterministic parameter search methods have been discussed in the presentpaper. Random search methods are interesting alternatives which are particularlyuseful if our estimation problem is considered as a missing data problem where thematching between original and displaced points is unobserved. Possible algorithmsinclude the stochastic EM algorithm (Diebolt & Celeux, 1993), Markov chain MonteCarlo approximations of the likelihood function (Geyer,1996), and a Bayesian ap-proach with missing data (Smith & Roberts, 1993). By regarding the matchings asmissing data in a simulation type algorithm, we replace the evaluation of the largesum in the likelihood (1) by sampling from a large number of states in a simulation.Related problems with matching of point sets arise in image analysis of multipleimages from di�erent perspectives. An example is given by Cross & Hancock (1998),where an EM algorithm is used to match graphs.



17If the displacement density k has bounded support, the approximation RAc k(yjXi) dy =0 used in the example in this paper holds exactly for points Xi such that the cor-responding support lies within A, and it is a good approximation when A is largecompared to, say, the 95% contour curves for the displacement distribution.The initial step used in the present paper seems to function well, and our con-clusion from some experimentation is that the precise implementation of the initialstep does not appear to be crucial.In general the suggested model and estimation algorithm work best when (i)the random displacements are relatively small compared to the distances betweenthe points in the original point process X, and (ii) the thinning probabilities andthe intensity of the superimposed Poisson process are relatively small. If theseconditions are not satis�ed the model might still hold, but one could expect that wewould then need a large number of terms in the likelihood approximation and thatmany iterations would be necessary in the likelihood maximisation, in contrast toour example. The risk of �nding a local optimum instead of a global optimum wouldalso be increased. Stochastic search algorithms would then be a natural alternative.Our example is, however, realistic for high quality aerial photographs of forests, andthe view analysed with trees lit from the side is the most di�cult of the three viewsstudied in Larsen & Rudemo (1998).6�3 ExtensionsIn this paper we have considered the case where both the X- and the Y -processesare observed, which enables us to estimate parameters of the disturbance mecha-nisms. When we have such estimates it is possible to consider estimation of theX-process based on observation of the Y -process alone. A natural procedure is touse a Bayesian approach based on a prior point process model for the X-process.AcknowledgementThe research reported in this paper was supported by the Danish Informatics Net-



18work in the Agricultural Sciences and the Gothenburg Stochastic Centre. We arefurther indebted to Morten Larsen, Geo� Nicholls, Antti Penttinen, Helle Sørensenand Elke Thönnes for valuable comments.AppendixProof of Theorem 1The likelihood function L(Y jX) is the Radon-Nikodym derivative of the measuredescribed in � 1�2 with respect to the Poisson process on A with intensity 1. We�nd the density by considering the point process Y on a sequence of partitions.A partition B of A is a set of disjoint subsets of A that have A as their union,and the norm of B is de�ned as the maximal mesh-size, i.e.kBk = maxB2B supx;y2B kx� yk;where kx� yk is the Euclidean distance between x and y. For a partition B we letY B = fY (B); B 2 Bg denote the restriction of Y to B. Let us consider a sequenceof partitions Bn; n � 1, of A. Assume that every B 2 Bn can be written as a unionof sets in Bn+1, that kBnk ! 0 and that jBjd > 0 for all B 2 Bn.Let P be the distribution of Y described in � 1�2 and let P0 correspond tothe Poisson process on A with intensity 1. Further, let P n and P n0 denote thedistribution of Y Bn under P and P0. Ho�mann-Jørgensen (1994, Sec. 11.11) nowassures us that, if P n � P n0 , then P � P0 and the Radon-Nikodym derivativeLn = dPndPn0 converges P0-almost-surely to the Radon-Nikodym derivative L = dPdP0 .For this to hold, we need supn Ln <1 almost surely, but this condition is satis�edif we have convergence towards a limit L <1 almost surely.In our case P n and P n0 are distributions of a �nite dimensional vector of integer-valued random variables, and it follows that P n � P n0 . The Radon-Nikodym deriva-tive is obtained by dividing the two point probabilities by each other. We proceedto determine Ln.



19Let y be a possible realisation of Y without multiple points. ThenP n0 (Y Bn = yBn) = YB2Bn exp(�jBjd) jBjy(B)dy(B)! = exp(�jAjd) YB2Bn jBjy(B)dy(B)! :Now turn to P n(Y Bn = yBnjX). To evaluate this probability we sum over the�nitely many ways in which the con�guration y = fyj; j 2 Ng can arise. Let M1and N1 denote subsets of M and N with jM1j = jN1j and let � 2 P(M1; N1). Theset M1 corresponds to X-points that are neither thinned nor censored but displacedto a position within A. The displaced X-points correspond to yj, j 2 N1, via thetransformation � such that j = �(i). However, when we consider the distributionof the discrete variable Y Bn , rather than the full information Y , we should onlyconsider into which sets in Bn the displaced points fall. For z 2 A we further letB(z) be the unique set B 2 Bn such that z 2 B.The probability of a point Zi, generated from the distribution k( � jXi), i 2M nM1, not being observed, considering also thinning, isp(Xi) ZAc k(zjXi) dz + 1� p(Xi):This is seen from calculations like pr(not observed) = pr(not thinned)pr(censoredjnot thinned)+pr(thinned). Similarly pr(Zi 2 B) = pr(not thinned)pr(Zi 2 Bjnot thinned) fori 2M1, so that pr(Zi 2 B) = p(Xi) ZB k(zjXi) dz:Consider n-values so large that y(B) 2 f0; 1g for B 2 Bn. Then we �nd thatP n(Y Bn = yBnjX) = XM1�MN1�NjM1j=jN1j X�2P(M1;N1)F1F2F3;where the three factors F1, F2 and F3, correspond to displaced points, thinned or



20censored points, and ghost points:F1 = Yi2M1 p(Xi) ZB(y�(i)) k(zjXi) dz;F2 = Yi2MnM1�p(Xi) ZAc k(zjXi) dz + 1� p(Xi)� ;F3 = YB2Bn exp�� ZB g(zjX) dz��ZB g(zjX) dz�y(B)�jfi2M1:y�(i)2Bgj= exp�� ZA g(zjX) dz�8<: Yj2NnN1 ZB(yj ) g(zjX) dz9=; :We now obtain the Radon-Nikodym derivative Ln(yBnjX) = dPndPn0 (yBn) asLn(yBnjX) = P n(yBnjX)P0(yBn) = exp ���ZA g(zjX) dz � jAjd�� XM1�MN1�NjM1j=jN1j X�2P(M1;N1) ~F1F2 ~F3;
with F2 as above,~F1 = Yi2M1 p(Xi)RB(y�(i)) k(zjXi) dzjB(y�(i))jd and ~F3 = Yj2NnN1 RB(yj ) g(zjX) dzjB(yj)jd :Now, letting n ! 1 and kBnk ! 0 and replacing y with Y we �nd that the threefactors ~F1, F2 and ~F3 converge towards L1, L2 and L3, respectively. �
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Table 1: The value of T (s(i); �̂)=T (s(1); �̂), i = 1; : : : ; 8, for the terms evaluated atthe approximate maximum likelihood estimate �̂ and the number of pairs in each ofthe corresponding statesi 1 2 3 4 5 6 7 8T (s(i); �̂)=T (s(1); �̂) 1 0.319 0.141 0.045 0.027 0.017 0.008 0.008No. of pairs 161 161 160 160 162 160 162 160
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Table 2: Parameter estimates and estimated standard deviations based on eight termsin the likelihood sum parameterp � �1 �2 �21 �22 cov1;2estimate 0.941 0.00028 -0.342 0.082 1.004 2.028 -0.049std. dev. 0.018 0.00004 0.080 0.113 0.115 0.235 0.115
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Table 3: Parameter estimates based on eight terms in the likelihood sum for threedi�erent sets Y1; : : : ; Yn with n=171, 206 and 243, respectivelyparametern p � �1 �2 �21 �22 cov1;2171 0.894 0.00011 -0.330 0.059 0.993 1.864 -0.092206 0.941 0.00028 -0.342 0.082 1.004 2.028 -0.049243 0.952 0.00050 -0.335 0.047 1.001 2.160 -0.035
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Figure 1: (a) Image with trees lit from the side; (b) 171 X-points, i.e. centres ofcircles, corresponding to `true' tree tops and 206 Y -points, dots, corresponding totemplate matching. The area of the delineated subplot is 4 454 m2, and the unit ofthe axes in (b) is linear pixel size, 0.15 m.Figure 2: (a) Model tree and (b) template with optimal bounding ellipse.Figure 3: Histogram of the values of 570 positive local maxima for the correlationbetween image and template.Figure 4: The logarithm of the terms obtained in the starting procedure for theapproximate likelihood maximisation.Figure 5: Value of the conditional log-likelihood as a function of the number of termsincluded in the likelihood sum.
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Figure 1: (a) Image with trees lit from the side; (b) 171 X-points, i.e. centres ofcircles, corresponding to `true' tree tops and 206 Y -points, dots, corresponding totemplate matching. The area of the delineated subplot is 4 454 m2, and the unit ofthe axes in (b) is linear pixel size, 0.15 m.
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Figure 3: Histogram of the values of 570 positive local maxima for the correlationbetween image and template.
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Figure 4: The logarithm of the terms obtained in the starting procedure for theapproximate likelihood maximisation.
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Figure 5: Value of the conditional log-likelihood as a function of the number of termsincluded in the likelihood sum.


