
Sampling Bias in Population Studies �How to Use the Lexis DiagramJens LundThe Royal Veterinary and Agricultural University,Department of Mathematics and Physics, DenmarkNovember 19, 1999Running headline: Sampling in the Lexis DiagramAbstractModi�ed versions of the life time distribution are often used in survival analysis. The modi-�cations depend on how we choose individuals for the study and on the assumptions on thebehavior of the population. A rigorous point process description of the Lexis diagram is usedto make the sampling mechanisms and the preconditions transparent. The point process de-scription gives a framework to handle all possible sampling patterns. The setup is generalizedso it can handle more complicated life descriptions than just lifetimes, and the disability modelis used as an example. Two setups can be used. Conditional on the birthtimes, the life timedistribution is left truncated and subject to either right censoring or right truncation. Assum-ing that the birthtimes can be described by a Poisson process the modi�cations are lengthbias and the recurrence time distribution known from renewal theory.Keywords: Survival analysis, sampling bias, Lexis diagram, Poisson process, point process.1 IntroductionThe Lexis diagram (Lexis, 1875; Keiding, 1990) is a useful tool when analysing lifetimes as it isimportant carefully to consider the way individuals are chosen for the study. The Lexis diagramis a coordinate system with calendar time in the horizontal direction and age of individuals inthe vertical direction, and each individual is represented by a line. The selection of individualsoften introduces biased or otherwise modi�ed lifetime distributions. This paper extends the pointprocess description of the Lexis diagram introduced by Brillinger (1986) and gives a derivation ofthe likelihood functions associated with �ve sampling patterns. All these sampling patterns canbe handled by the point process framework provided. For four of the �ve patterns the likelihood



Sampling in the Lexis Diagram 2functions are derived in two contexts: conditional on the birthtimes and under the assumptionthat the process of birthtimes is a Poisson process.The conditional approach is the one most often used in classical survival analysis (Andersen etal., 1993), and the lifetime distributions are often left truncated and right censored in this setup.The usual non-parametric estimators such as the Kaplan-Meier estimator and the Nelson-Aalenestimator can be used here.Further assumptions are required in cross sectional studies and in studies where for example theage at entry to the study is unobserved, or the age is observed but the time of death is unobserved.These situations have previously been handled in a renewal setup, and renewal processes are some-times used in arguments for survival analysis likelihood functions, even though no �replacement�takes place (McClean & Devine, 1995; Winter & Földes, 1988; Denby & Vardi, 1986; Vardi, 1989,Problem B). Here we use an alternative approach based on the point process description of theLexis diagram (Brillinger, 1986) and the assumption that the birthtimes can be described by aPoisson process (Simon, 1980; Brillinger, 1986; Keiding, 1991; Keiding, 1992). The Poisson as-sumption provides us with information on the survival until the start of the study. We now o�er aframework based on the individual lifetimes to derive the same likelihood functions as in renewaltheory, and we recognize the same forms of length bias as in renewal theory. The likelihoods are thesame and so are the estimators, but the proofs of consistency and week convergence of estimatorsfrom renewal theory might not be valid in our setup.We also consider a generalization of the Lexis diagram which expands the available class of models� and thus the usefulness of the mathematical description � considerably. The general setupprovides a common framework for handling multi-state models, for example, and all samplingpatterns can be handled in a uni�ed way. The disability model (Keiding, 1991) is used as an exampleon how this �tool box� can be used. Also, the general setup allows for inclusion of covariates, asconsidered by Simon (1980) in a simple example. Analysis conditional on the birthtimes andcovariates can be handled for quite complicated models (Andersen et al., 1993). Our frameworkallows a more detailed study of the consequences of including covariates in models where thebirthtimes are considered random.The paper is organized as follows: In Section 2 we discuss the basic model and summarize thesampling patterns. The likelihood functions are derived in Section 3 (conditional on the birthtimes)and Section 4 (with the Poisson assumption). We discuss the Poisson assumption in Section 5. InSection 6 we generalize the setup and use the disability model as an example.2 Sampling in the Lexis diagram2.1 The Lexis diagramThe Lexis diagram is a coordinate system with calendar time in the horizontal direction and age



Sampling in the Lexis Diagram 3of individuals in the vertical direction. An example of a Lexis diagram is the top left sub-�gure ofFig. 1. An individual is represented by a life line with slope 1 from the point of birth to the pointof death. If � is the birthtime and x is the lifetime, then the life line is from (�; 0) to (� + x; x).We often think of the Lexis diagram as the points (� + x; x) of deaths. Fig. 1hereLet (�i)i2I denote the collection of all birthtimes. The index set I can be taken as the integersZ with the conventions that � � � < �i < �i+1 < � � � and � � ���1 < 0 � �0 � � � . We assume thatall birthtimes are distinct, but this is not critical. Assume further that there are only �nitelymany birthtimes in every bounded Borel set B � R. We think of (�i)i2I as a point process on Rand denote by � the associated counting measure (Daley & Vere-Jones, 1988; Karr, 1991; Stoyanet al., 1995). Let "c be the Dirac measure at c, then � = Pi2I "�i and �(B) is the number ofbirthtimes in B. We call the point process (�i)i2I or the equivalent � the process of birthtimes.The advantage of having the process of birthtimes de�ned on the whole axis R will be evident inTheorem 4.1 and its applications like Example 4.3. Compared to for example Simon (1980) weavoid asymptotic arguments like �in the distant past� or �as t tends to 1�.For all i 2 I , associate with the individual born at time �i a lifetime Xi in R0 = [0;1[.De�nition 2.1 The Lexis point process � is the point process (�i; Xi)i2I on (R � R0 ;B 
 B0),that is � =Pi2I "(�i;Xi).The distinction between the Lexis diagram and the Lexis point process is important. The pointsof deaths in the Lexis diagram are given by the point process (�i +Xi; Xi)i2I , but this cannot beused as a de�nition of a Lexis point process in the general setup in Section 6.2.2 Summary of the sampling patternsIn this section we review some natural ways to sample individuals in the Lexis diagram as illustratedin Fig. 1. Let t1 < t2 < t3 be given time points.Cohort study We observe all individuals born in ]t1; t2]. Observation might be stopped at a timet3. In this case the actual lifetimes of individuals still alive at time t3 are not observed.Time window All deaths (times and ages) in the set [t1; t2]� R0 are observed. An observation ofthis type could arise in register based study.Cross sectional study The ages of individuals alive at time t are recorded.Synthetic cohort All deaths and all individuals alive during the time period [t1; t2] are observed.The observation corresponds to a time window and a cross section at time t2. This is theclassic case as synthetic cohorts are used in the construction of life tables.Follow-up on cross sectional study At time t2 we observe whether individuals alive at time t1 aredead or alive. If alive we observe the age, and if dead we observe the age and time of death.



Sampling in the Lexis Diagram 42.3 The basic assumptionIn this section we introduce the basic probabilistic model and some notation. We need an assump-tion on conditional independence.Assumption 2.2 The lifetimes Xi (i 2 I) are independent conditional on the process � of birthtimes(�i)i2I . The distribution of Xi depends on � only through �i.Let P be a Markov kernel from (R;B) to (R0 ;B0) describing the distribution of Xi given �i. Thatis, P is a map from R � B0 to [0; 1], such that P (�; �) is a probability measure on (R0 ;B0) for all� 2 R, and the mapping � 7! P (�;A) from R to [0; 1] is measurable for all A 2 B0. We often writeP�(A) instead of P (�;A). Let F� denote the distribution function for P� , and �F� = 1 � F� thecorresponding survival function. We focus on the situation where the lifetime distribution has adensity f� w.r.t. the Lebesgue measure l0 on R0 .It is tacitly understood that all relevant expectations are �nite. In particular the expected life timeis �nite and the mean number of individuals alive at any given time t should be �nite.3 Analysis conditional on selected birthtimesIn this section we condition on the birthtimes for the individuals we observe and prove a theoremstating that given the birthtimes for the individuals we observe, the lifetimes Xi for those individ-uals are independent. Furthermore the lifetimes must be analysed conditional on the event thatwe observe the individual, and their distributions do not depend on the distribution of the processof birthtimes. In most cases we get a traditional analysis with left truncation and right censoringof the lifetimes.Let (h�)�2R be a family of measurable functions h� : R0 ! f0; 1g indicating whether we observethe individual born at time � with lifetime x or not. If h�(x) = 1 we get information on theindividual, if h�(x) = 0 we do not get information on the individual.Theorem 3.1 Given the birthtimes �i for the individuals we observe (i 2 I : h�i(Xi) = 1), thelifetimes Xi for those individuals are independent, and the lifetime Xi for i 2 I with h�i(Xi) = 1has distribution P�i( � jh�i(Xi) = 1).Proof Assumption 2.2 states that, given � =Pi2I "�i , the lifetimes (Xi)i2I are independent andXi � P�i .Now condition on both � and the family of functions (h�i(Xi))i2I . Then (Xi)i2I are independentand Xi � P�i ( � jh�i(Xi)). To see this, note that we haveL�(Xi)i2~I ���� =Xi2I "�i�= 
i2~IP�i (Xi 2 � )



Sampling in the Lexis Diagram 5where ~I denotes any �nite subset of I and 
i2~IP�i is the product measure. The further condition-ing on (h�i(Xi))i2I has a product structure, and thus by the principle of repeated conditioning(Jacobsen, 1982, App. 1) the independence is preserved andL�(Xi)i2~I ���� =Xi2I "�i ; (h�i(Xi))i2I�= 
i2~IP�i (Xi 2 � jh�i(Xi)):Projection on the coordinates i 2 I : h�i(Xi) = 1 gives that (Xi)i2I:h�i (Xi)=1 are independentgiven � and (h�i(Xi))i2I , and Xi � P�i( � jh�i(Xi) = 1).This conditional distribution does not depend on those �i and h�i(Xi) for which h�i(Xi) = 0, andthey can be omitted from the conditioning. �Let O be a deterministic measurable subset of the Lexis diagram R � R0 with the property thatall possible life lines intersect O at most once. O indicates which area of the Lexis diagram weobserve. Imagine an in�nite life line attached to the individual born at time �. Let ain;� be theage when the life line enters O, and let aout;� be the age when the life line leaves O again. If thelife line does not leave O again, then aout;� = 1. In case the life line does not intersect O wede�ne ain;� = aout;� = 1. The ages ain;� and aout;� are deterministic conditionally on �, so thetruncations and censoring in the following are independent (Andersen et al., 1993, Sec. III.2, III.3).Truncation is inference in a conditional distribution, and left truncation is when we condition onthe lifetime being larger than a certain age. Censoring, on the other hand, is an incompleteobservation. Right censoring occurs when we only observe the lifetime to be larger than a certainage, but do not observe the lifetime itself.We consider two situations. First, let h�(x) be the indicator function for the event (x � ain;�).This means we observe life lines intersecting the observation set O. Conditional on the birthtimes,the observed lifetimes are independent and Xj for j 2 J = fi : h�i(xi) = 1g must be analysed lefttruncated at ages ain;�j . Because we only observe points of death in the set O, the lifetimes are rightcensored at ages aout;�j . If the Markov kernel P�( � ) does not depend on � we immediately have theKaplan-Meier estimator for the survival function, the Nelson-Aalen estimator for the integratedhazard, and asymptotic results of their behaviour (Andersen et al., 1993, Sec. IV.1.5). Second, leth�(x) be the indicator function for the event (ain;� � x < aout;�). This means we only observeindividuals whose points of death are in the set O. Conditional on the birthtimes �j = tj � xjfor the jJ1j deaths observed at (tj ; xj)j2J1 , the lifetimes Xj for j 2 J1 are independent and mustbe analysed left truncated at age ain;�j and right truncated at age aout;�j . The nonparametricmaximum likelihood estimator is a special case of the Turnbull estimator (Turnbull, 1976), whichin turn is an example of the EM algorithm.We are now ready to analyse four of the �ve sampling patterns. The lifetimes Xj in the cohort studyshould be analysed as independent and from the distribution f�j as ain;�j = 0 and aout;�j =1 forindividuals we observe. If observation is stopped at time t3 we analyse the lifetimes right censoredat ages aout;�j . In the time window the lifetimes are left and right truncated at age ain;�j and



Sampling in the Lexis Diagram 6aout;�j respectively. Both the synthetic cohort and the follow up on cross sectional study have thelifetimes left truncated and right censored at age ain;�j and aout;�j respectively.For cross sectional data the situation is di�erent. Indeed, let h�(x) be the indicator function forthe event (� � t; x � t � �) and let (aj)j2J2 denote the jJ2j ages of individuals alive at time t.Conditionally on the birthtimes �j = t�aj the lifetimes Xj are independent and must be analysedin the conditional distribution given Xj � ain;�j = aj . Unfortunately this is everything we observeabout Xj , and thus the likelihood function equals 1. However, with a model for the birthtimes �,cross sectional data can be analysed.4 A Poisson model for the process of birthtimesIn the cross sectional study we need a model for the birthtimes so we can use information on survivaluntil the start of the study. We see various forms of length bias instead of left truncation in allsampling patterns. The Poisson process is mathematically convenient as a process of birthtimes(Brillinger, 1986) and we discuss it further in Section 5.1.4.1 General Poisson setupIn this section we model the process of birthtimes � as a Poisson process. That is, the numbersof births in disjoint sets are independent and the number of births �(B) in a bounded Borel setB 2 B is Poisson distributed with mean E �(B) = �(B) < 1. The intensity measure � for theprocess of birthtimes is not allowed to have any atoms, and we assume it has density ' w.r.t. theLebesgue measure l on R. We call ' the intensity of �.The following theorem states that the Lexis point process is a Poisson process when the processof birthtimes is a Poisson process. The theorem is known as �positioning dependent marking�(Karr, 1991, Example 1.28 and 2.24, Exercise 1.11) and is mentioned by Daley & Vere-Jones (1988,pp. 205�206). It is formulated in a general version that will be needed in Section 6. For now, themeasurable spaces (E; E) and (G;G) could be substituted by (R;B) and (R0 ;B0) respectively, andYi could be substituted by Xi.Theorem 4.1 Let � be a Poisson process on (E; E) with intensity measure � and let P be a Markovkernel from (E; E) to (G;G). Assume that, given � =Pi2I "�i , (Yi)i2I is a family of independentrandom variables, Yi with distribution P (�i; � ) on (G;G) for all i 2 I. Then the Lexis point process� =Pi2I "(�i;Yi) is a Poisson process on (E �G; E 
 G) with intensity measure � given by�(A�B) = ZA P (�;B) �(d�) (1)for A 2 E and B 2 G.



Sampling in the Lexis Diagram 7Proof Brillinger (1986) proved the result in the case of Example 4.2 below, but he did not statethe result in the generality of the theorem. His proof carries over to the general situation and isfairly straightforward using Laplace functionals. �With the notation from Section 2.3, the intensity measure � for the Lexis point process � hasdensity �(�; x) = '(�)f�(x) w.r.t. l 
 l0 according to the theorem. We call � the intensity for �.The following two examples introduce the important point processes ~� and N t.Example 4.2 (Points in the Lexis diagram) The points of deaths in the Lexis diagram are a bi-jective transformation (t; x) h7! (t + x; x) of the points in the Lexis point process. The map htransforms � to the point process of deaths in the Lexis diagram ~� = h(�) =Pi2I "(�i+Xi;Xi), and~� is a Poisson process with intensity measure ~� = h(�) that has intensity ~�(t; a) = '(t�a)ft�a(a)(Brillinger, 1986). That is, the expected number of deaths in calendar time ]t; t + dt] and at age]a; a+ da] is ~�(t; a) dt da. �Example 4.3 (Cross section) For �xed t 2 R de�ne K : B0 ! B 
 B0 by K(A) = f(�; x) : � <t; x > t� �; t� � 2 Ag. Then N t(A) = �(K(A)) is the number of individuals alive at time t withage in A. The theorem in the appendix states that for t �xed, N t( � ) has a version that is a Poissonprocess on R0 . The intensity is �t(a) = '(t� a) �Ft�a(a). This is seen fromEN t([0; a]) = �t([0; a]) = �(K([0; a])) = ZK([0;a]) �(s; x) d(s; x)= Z tt�a Z 1t�s '(s)fs(x) dx ds= Z a0 '(t� u) �Ft�u(u) du;by substitution of s by u = t� s. (The second equality is due to the appendix, the fourth equalityis due to Theorem 4.1.) Keiding (1991, p. 379) stated a somewhat similar result without makingthe underlying assumptions clear. �Example 4.4 (Independence) We can use Theorem 4.1 and the basic independence property of thePoisson process to infer results about independence of relevant observations in survival analysis.The two point processes N t and ~� are of course not independent. However N t and the restrictionof ~� to ] �1; t[�R0 have independent versions because they concern disjoint parts of the Lexisdiagram. This means that the number and ages of individuals alive at time t are independent ofdeaths before time t. Similar arguments were also used by Brillinger (1986). �We need a few general results about Poisson processes (Daley & Vere-Jones, 1988). If �1 and �2 areindependent Poisson processes on (S1;S1) and (S2;S2) respectively, they correspond to one Poissonprocess on the disjoint union S1 �[ S2 = f(j; s) j (j = 1; s 2 S1) or (j = 2; s 2 S2)g. Let � be aPoisson process on (S;S) with intensity measure � and let A 2 S such that 0 < �(A) <1. Given�(A) = n = jJ j, the points (xj)j2J of � on A are i.i.d. with distribution �( � ) = �( � \ A)=�(A).Assume that � has intensity � w.r.t. a suitable reference measure. The likelihood for the observation(xj)j2J of � on A is L / exp(��(A))Qj2J �(xj).



Sampling in the Lexis Diagram 8These properties of Poisson processes together with the three basic examples 4.2, 4.3, and 4.4make up the basic parts in the following. For each of the sampling patterns in Section 2.2 weinvestigate how to analyse the observations. The procedure is to identify the sampling pattern asan observation of ~� and N t on suitable sets and for a suitable t. The observations are independentaccording to Example 4.4 and we have an expression for the likelihood function. In case theexpected number of observed points (�(A) above) depends on the life time distribution f weoften have problems interpreting the likelihood function. We condition on the observed number ofindividuals to obtain an alternative likelihood in this situation. Sections 4.4 and 4.5 illustrate animportant point in this respect � whether to condition on the total number of individuals or tocondition on the numbers of individuals from each of the two processes.The process of birthtimes is Poisson with intensity '(t). The starting point is the Poisson process ofdeaths, ~�, with intensity ~�(t; a) = '(t� a)ft�a(a). We focus on the time homogeneous case whereneither the process of birthtimes nor the lifetimes are allowed to depend on calendar time; '(t) = 'and ft�a(a) = f(a). Thus ~�(t; a) = 'f(a). Let M denote the expected lifetime R10 af(a) da =R10 �F (a) da. The assumption of time homogeneity is discussed in Section 5.2.The following notation is used in the rest of Section 4. Let (tj ; xj)j2J1 be an observation of ~�on a suitable set C depending on the sampling pattern. That is, (tj ; xj) is the time and age ofdeath for individual j, and we have observed jJ1j= ~�(C) deaths. (The death times tj shouldbe distinguished from the sampling constants t1 and t2 without problems.) In a similar way, let(aj)j2J2 be an observation of N t on a set C. That is, aj is the age of an individual alive at time tand jJ2j= N t(C) is the number of individuals alive at time t with age in C. The individuals aliveare censored at the observed age.4.2 Cohort study and time windowWe observe deaths in the Lexis diagram on the set Ocs = f(s; a) 2 R � R0 js � a 2]t1; t2]g in thecohort study. The expected number of deaths is (t2 � t1)', which equals the expected number ofbirths in ]t1; t2]. The likelihood is L / exp(�(t2 � t1)')'~�(Ocs)Qj2J1 f(xj). The birth intensityis estimated by '̂ = ~�(Ocs)=(t2 � t1) and the lifetime distribution f must be estimated by ~�(Ocs)independent observations from f .In case the study is stopped at time t3, the observation is composed of two independent observa-tions. An observation of the deaths in the Lexis diagram on the set Ocs \ (]�1; t3]�R0 ) and anobservation of the ages of individuals alive at time t3. The latter is an observation of N t3 on theset [t3� t2; t3� t1[. The expected number of points are R t3t1 R s�t10_s�t2 'f(a) da ds and R t3�t1t3�t2 ' �F (a) darespectively, and the likelihood function is thus proportional toexp (�(t2 � t1)')'jJ1j+jJ2jQj2J1 f(xj)Qj2J2 �F (aj). We see, that the ages must be analysed asindependent with ordinary right censoring. This is also the case when we condition on the totalnumber of individuals observed.



Sampling in the Lexis Diagram 9In the time window we observe the deaths in the set [t1; t2]�R0 . This is, word for word, the sameas the cohort study except that we do not have the notion of censoring here. The expected numberof individuals is the same, the likelihoods are the same etc.4.3 Cross sectional studyIn a cross sectional study at time t we observeN t on the whole axis R0 . The expected number of in-dividuals alive at time t is 'M , and thus the likelihood function equals L / exp(�'M)'Nt(R0)Qj2J2 �F (aj).Since the mean lifetimeM depends on f , it is not obvious how to maximize the likelihood function.Conditioning on the observed number of individuals N t(R0 ) = n, the observed ages are i.i.d. withdensity �F (a)=M . In epidemiology it has been known for a long time that the density of ages ina cross section in a �stable� population is proportional to the survival function, see for examplePressat (1995, p. 150). The density �F (a)=M is the stationary recurrence distribution known fromrenewal theory and it re�ects the fact that we observe the ages of individuals alive and thus aresubject to interception bias. Feller (1971) page 369 (4.6), page 371 (4.16), and Problem 10 page 386gives an overview of biased distributions in renewal theory, and Vardi (1988) advocates the ter-minology �interception bias� for the stationary recurrence time distribution. The nonparametricmaximum likelihood estimator from n i.i.d. replications from the recurrence time distribution isknown in the literature as the Grenander estimator, see Barlow et al. (1972, pp. 223), Denby &Vardi (1986), and Vardi (1989, Problem D).4.4 Synthetic cohortObserving deaths and individuals alive in a time window is equivalent to observing deaths in atime window and a cross section at time t2. The two observations are independent. For thecross sectional study we know that it is most sensible to condition on the number of individu-als alive at time t2. By symmetry it seems natural to condition on the number of deaths ob-served as well. Conditional on ~�([t1; t2] � R0 ) = n1 and N t2(R0 ) = n2 the likelihood equalsL / Qj2J1 f(xj)Qj2J2 �F (aj)=M . The nonparametric maximum likelihood estimator is consid-ered by Vardi (1982) and Soon & Woodroofe (1996). Conditional on the total number ~�([t1; t2]�R0 ) + N t2(R0 ) being equal to n, we obtain a likelihood with factors f(xj)=(M + (t2 � t1)) and�F (aj)=(M + (t2 � t1)). This likelihood has no nice interpretation and thus it does not seemreasonable to condition on the total number of individuals.4.5 Follow-up on cross sectional studyWe follow the individuals alive at time t1. At time t2 the observation is stopped and we havecensoring. This situation is very much like the censoring in the cohort study in Section 4.2. Simon(1980) considers the follow up on a cross sectional study in a slightly di�erent setup.



Sampling in the Lexis Diagram 10Assume that we follow individuals alive at time t1 until death. That is, we observe the deaths(tj ; xj)j2J1 in the Lexis diagram on the set Ofu = f(s; a) 2 R � R0 js � t1; a � s � t1g. Theexpected number of individuals is the expected number of individuals alive at time t1, i.e. 'M .The likelihood function is L / exp(�'M)'~�(Ofu)Qj2J1 f(xj). Conditioning on ~�(Ofu) = n, thepoints (tj ; xj)j2J1 are i.i.d. with densityf(xj)M 1 ((tj ; xj) 2 Ofu) : (2)The distribution (2) is known from renewal theory as the simultaneous distribution of a forwardand backward recurrence time. The point (tj ; xj) is simply a bijective transformation of (bj ; cj) =(xj � (tj � t1); tj � t1), the time lived before and after time t1 respectively, so an interpretation ofxj = bj + cj as the sum of the two recurrence times is natural. The marginal distribution of xjhas the length biased distribution with density (xf(x))=M . The likelihood function based on themarginal distribution of x depends on f in the same way as the simultaneous likelihood (2).When stopping the observation at time t2, we transform the points (tj ; xj) with tj > t2 to (t2; xj �(tj � t2)). (This is a non-injective transformation of a Poisson process and we use the Theoremin the appendix. We get the same result if we consider the censoring in the same way as inSection 4.2.) A censored point contributes to the likelihood by a factor �F (a)=M from the recurrencetime distribution. This means that if we observe the deaths (tj ; xj)j2J1 and the ages (aj)j2J2 ofindividuals alive at time t2, the likelihood isL / Yj2J1 f(xj)M Yj2J2 �F (aj)M (3)conditional on the total number of individuals jJ1j+jJ2j= n. As noted the contributions fromcensored observations to the likelihood function is interception biased. This can be interpreted asa censoring of the forward time in the simultaneous distribution of backward and forward times (2).Note that right censoring in the marginal distribution of xj gives a di�erent result!Winter & Földes (1988) �nd the nonparametric maximum likelihood estimator for the likelihood (3)in a renewal process setup and it can be re-derived in a counting process framework (Keiding &Gill, 1988, Section 7). The estimator is found in yet another setup by Vardi (1989, Problem B).5 Discussion of some assumptionsIn Section 5.1 we discuss the Poisson assumption from Section 4, and in Section 5.2 we consider thesituation where the process of birthtimes is non time-homogeneous. Remember that conditional onthe birthtimes for observed individuals the distribution of the process of birthtimes is irrelevant.The survey paper Keiding (1990) discusses estimation of the lifetime distribution conditional onthe birthtimes when the lifetime distribution depends on calendar time as well as age. A simpleexample is when the hazard �(t; a) for Pt�a( � ) at age a is piecewise constant. As in the ordinary



Sampling in the Lexis Diagram 11case with the age axis only, the maximum likelihood estimator of each of these constants is an�occurrence exposure rate�. That is, the number of deaths divided by the total time under risk.5.1 The Poisson assumptionThe advantage of an assumption on the distribution of the process of birthtimes is that we can useinformation on survival until the start of the study. This is most predominant in the cross sectionalstudy where such an assumption is mandatory. The Poisson process is a rough, but very usefulapproximation of real open populations. The most important aspect of the Poisson assumption isthe independence between individuals. Note, that we most often condition on a suitable number ofindividuals before the lifetimes can be analysed as independent. Brillinger (1986), Keiding (1991),references therein, and the accompanying discussions have a lot of comments on the applicabilityof the Poisson assumptions in real life setups. The conclusion is that the Poisson approximationusually performs well. Another approach would be to model changes in a general populationwith the general framework in Section 6. The Poisson process assumption is the most simple andnon-informative assumption we can make.The Poisson assumption is also mandatory in for example the time window (Section 4.2) when thetime of death tj or the age at entry is unobserved. See also references on renewal processes givenin the introduction.When both the conditional approach and the Poisson approach are available, which one should weuse? When M is small compared to ]t1; t2] the synthetic cohort and the time window have almostidentical likelihoods as the fraction of individuals dying in the interval tends to one. Furthermorethe fraction of individuals that are both born and die in ]t1; t2] tends to one. In this case, thelikelihood functions conditional on the birthtimes and with the Poisson assumption is almostidentical since the individuals that are both born and die in ]t1; t2] contribute by a factor f(x) inboth cases. The conclusion is that the Poisson assumption is useful when M is large compared to]t1; t2], and in the cross sectional study and the follow-up on a cross sectional study. As will beseen in Example 6.2, the mean lifetime M could for example be the mean time spent in a diseasestate. I am not aware of any work comparing actual estimates and their variances conditional onthe birthtimes and with the Poisson assumption.5.2 Process of birthtimes depends on calendar timeConsider a non time-homogeneous Poisson process with intensity '(t) describing the births andthe lifetimes being time-homogeneous; fs(a) = f(a). Assume that the birth intensity '(t) isknown. In a cross sectional study we observe the jJ2j= N t(R0 ) ages (aj)j2J2 of individuals aliveat time t. The expected number of individuals is R10 '(t � a) �F (a) da and thus the likelihoodis L / exp �� R10 '(t� a) �F (a) da�Qj2J2 '(t � aj) �F (aj). Conditional on N t(R0 ) = n, the ages(aj)j2J2 are i.i.d. with density '(t � a) �F (a)= R10 '(t � a) �F (a) da. In both cases ' appears as a



Sampling in the Lexis Diagram 12weight function for the observed ages. If for example the mean number of newborn is increasing,more weight is given to young individuals.The lifetimes can be analysed by the age transformation h(a) = R a0 '(t� s) ds. Let ~aj = h(aj) andnote that the transformed ages (~aj)j2J2 are i.i.d. with density �F (h�1(~a))= ~M . Here ~M is the meanlifetime in the distribution with survival function �F �h�1. As in Section 4.3 we obtain an estimatefor �F � h�1, and h is known so we get an estimate of �F .A similar age transformation can be used in the other sampling patterns, except the cohort studywhere no special tricks are needed. When ' is not known in advance one might use an estimateof '. Keiding (1992, p. 319) gives the advice to avoid the reliance on the stationarity assumptionwhen ever possible. The alternatives are to condition on the birthtimes or to use information onthe non-homogeneity as demonstrated here.6 GeneralizationsIn applications there would often be complications due to for example migration and populationheterogeneity. In some cases, when accurate individual level data are available, estimation may becarried out by allowing for covariates and more complicated life descriptions. We use the disabilitymodel as an example, and we focus on probabilistic statements about the disability model, whereasKeiding (1991) focuses on estimation.6.1 Generalizations of the Lexis diagramWe extend the notation from Section 2.1 and restate some earlier results. Let � = Pi2I "�i bethe point process of birthtimes (�i)i2I on a measurable space (E; E). For example, if we want thecovariate gender in our model, we take E as R�fmale; femaleg. We call a description of a whole lifeY and assume it has values in a space (G;G). Such a description can be a stochastic process (Ya)a�0describing the status Ya of the individual at age a. Marked point processes on the real line is onepossible class of processes (Andersen et al., 1993). They can be illustrated in the Lexis diagramby adding marks on the life lines at the time points of events. Let Yi be the life descriptionfor the individual born at �time� �i and let (Yi)i2I be the collection of life descriptions. As inDe�nition 2.1 we de�ne the Lexis point process � as the point process (�i; Yi)i2I on (E�G; E 
G),that is � =Pi2I "(�i;Yi). Similar to Assumption 2.2 we assume that the life descriptions Yi (i 2 I)are independent conditional on the process � of birthtimes (�i)i2I and that the distribution of Yidepends on � only through �i. Furthermore, as in Section 2.3, let P be a Markov kernel from(E; E) to (G;G) describing the distribution of Yi given �i and use similar notation. Theorem 3.1carries over without problems, and Theorem 4.1 is already formulated in the general context. Asin Section 4.1 the intensity measure � for � has intensity �(�; y) = '(�)g(�; y) w.r.t. �E 
 �G,whenever the intensity measure � for the process of birthtimes � has density ' w.r.t. a measure�E on E and the measures P (�; � ) have density g(�; y) w.r.t. a measure �G on G.



Sampling in the Lexis Diagram 136.2 Example: the disability modelThe disability model in Fig. 2 has three states, H (healthy), I (invalid), and D (dead). Assumethat the process of birthtimes is Poisson with intensity '(�), the transition intensities from state Hare �H(t; a) and 
(t; a), and that the death intensity �I (t; a; d) from state I depends on calendartime t = � + a, age a and duration d. No reactivation is allowed, that is, the transition I ! His not possible. The space G of life descriptions can be taken as all right continuous piecewise Fig. 2hereconstant functions (Ya)a�0 with state space ~G = fH; I;Dg and only �nitely many jumps in �nitetime.The transition intensities specify the Markov kernels P�( � ) and for exampleP�(fY0 = Hg) = 1;P�(fYa = Hg) = exp�� Z a0 (�H + 
)(� + u; u) du� ;P�(fYa = Ig) = Z a0 he� R u0 (�H+
)(�+v;v) dv
(� + u; u)e� R au �I (�+v;v;v�u) dvi du:Note that the processes Y are not Markov processes because the intensity from state I dependson how long the individual has been in state I .For Y 2 G de�ne T1 as the age at the jump out of state H and T2 as the age at the jump intostate D. If the �rst jump is H ! D then T2 = T1, else the �rst jump is H ! I and T2 is the ageat the second jump I ! D. Let # denote �number of�, and de�ne for t 2 R, A;B 2 B0 and C 2 Bthe following quantities:� N t;H(A) = # individuals in state H at time t and age in A.� N t;I(A�B) = # individuals in state I at time t, age in A and duration in B.� N t;H;D(C � A) = # individuals in state D at time t, who made the transition H ! D atcalendar time in C and at age T1 in A.� N t;I;D(C �A�B) = # individuals in state D at time t, who made the transition I ! D atcalendar time in C, at age T2 in A and duration T2 � T1 in B.� NH;I(C � A) = # individuals making the transition H ! I at age in A and calendar timein C.The processes N t;H and N t;I count the number of individuals in states H and I , whereas N t;H;Dand N t;I;D describes the time point for the transition to state D. We now �nd the intensities forthe N processes and some independence relations.Theorem 6.1 The processes N t;H(�), N t;I(�), N t;H;D(�), N t;I;D(�), and NH;I(�) all have versionsthat are Poisson processes, and the versions of N t;H , N t;I , N t;H;D and N t;I;D are independent.The intensity processes are given by�t;H(a) = '(t� a) exp�� Z a0 (�H + 
)(t� a+ u; u) du� ;



Sampling in the Lexis Diagram 14�t;I(a; d) = 1 (d 5 a)'(t� a) exp � Z a�d0 (�H + 
)(t� a+ u; u) du!� 
(t� d; a� d) exp�� Z aa�d �I(t� a+ u; u; u� (a� d)) du� ;�t;H;D(s; a) = 1 (s 5 t)'(s� a) exp�Z a0 (�H + 
)(s� a+ u; u) du��H(s; a);�t;I;D(s; a; d) = 1 (s 5 t; d 5 a)'(s� a) exp � Z a�d0 (�H + 
)(s� a+ u; u) du!� 
(s� d; a� d) exp�� Z aa�d �I(s� a+ u; u; u� (a� d)) du��I(s; a; d);�H;I(t; a) = '(t� a) exp�� Z a0 (�H + 
)(t� a+ u; u) du� 
(t; a):Proof The processes have versions that are Poisson processes according to the theorem in theappendix: The space R�G is a Borel space because it can be written as a sequence space. Boundedsets in the arguments of the N processes relate to bounded sets for the process of birthtimes, andhence the expected values are �nite. The lifetime distributions are continuous so singleton setshave zero measure. For N t;H;D, N t;I;D, and NH;I , we do not have disjoint sets in R�G for disjointsets of the argument, but the intersections have intensity measure zero because each individualP�-a.s. makes the transitions 0 or 1 time. Similarly the processes N t;H , N t;I , N t;H;D and N t;I;Dhave independent versions according to the corollary in the appendix.The calculation of the intensities is straightforward, using the de�nitions of the processes and theintensity measure (1). �Theorem 6.1 states for example that the number of individuals in state H respectively I at timet are independent and both Poisson distributed. Conditional on N t;H(R0 ) +N t;I(R0 � R0 ) = n,the distribution on state, age, and duration for a random individual is given byP (individual in H) = 1� P (individual in I) = EN t;H(R0 )EN t;H(R0 ) + EN t;I(R0 � R0 ) ;P (age 2 dajindividual in H) = �t;H (a)EN t;H(R0 ) da;P (age 2 da; duration 2 dvjindividual in I) = �t;I(a; v)EN t;I(R0 � R0 ) da dv:Example 6.2 (Prevalent cohort study) The prevalent cohort study (Simon, 1980; Keiding, 1992,Sec. 7) is a sample of the individuals in the disease state I at time t1, and at time t2 we follow upon the sampled individuals. We are interested in the intensity �I , that determines the duration ofthe stay in state I .Simon (1980) assumes individuals enter state I as a time homogeneous Poisson process in calendartime and does not consider age at all. So �when living in a world of only diseased� we can applythe results in Section 4.5 to the duration in state I . We now comment on the situation where ageis considered.



Sampling in the Lexis Diagram 15Keiding (1992) states in an informal way that conditional on suitable times the hazard for theage at death is �I . We now state a similar result and assume all three variables time, age, andduration known. De�ne (te; ae) = (� + T1; T1), the calendar time and age at entry to state I , andthe duration d = T2 � T1 of the stay in state I . Note that the Lexis point process is a bijectivetransformation of ((�i + T1;i; T1;i); (T2;i � T1;i))i2I . Note furthermore that d � 0, and that d > 0if and only if the transition H ! I is made. Conditional on (te;i; ae;i)i2I the durations (di)i2Iare independent since we condition on the birthtimes �i = te;i � ae;i, and the duration d hasdistribution: P (d > 0) = 1� P (d = 0) = 
(te; ae)(�H + 
)(te; ae) ;hazard for d j d > 0 : �I (te + d; ae + d; d) = �I;te;ae(d):We now consider the pair (te; ae) as the birthtime and d as the description of life. The argumentsjust given show that Assumption 2.2 is ful�lled. Theorem 3.1, with h(te;ae) as the indicator functionfor individuals in state I at time t1, states that the durations must be analysed as independent andleft truncated at the duration at time point t1 conditional on (te; ae). But left truncation preservesthe hazard �I;te;ae(d) and we have independent delayed entry (Keiding, 1992).Information on the duration up to the sampling point t1 can be used if we assume that the processof birthtimes �i is a Poisson process. Assume that all intensities are independent of calendar timet, and that the death intensity �I(t; a; d) = �I(d) for diseased individuals only depends on durationd. This assures that individuals enter state I as a homogeneous Poisson process in calendar timet, even though the intensity 
(a) is allowed to depend on age a. This is the case of Simon (1980)and Section 4.5. We can easily show that conditional on the number of sampled individuals, thejoint distribution of age ae at entry to state I and total duration d has a density proportional toexp �� R ae0 (�H + 
)(u) du� 
(ae)R10 exp �� R a0 (�H + 
)(u) du� 
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Sampling in the Lexis Diagram 18� K(;) = ;.� K is countably set additive; that is for A1; A2; � � � 2 ~S we haveK(A1 [ A2 [ � � � ) = K(A1) [K(A2) [ � � � .� For a 2 ~S we have �(K(fag)) = 0.� For A 2 ~S bounded we have �(K(A)) <1.� For A1; A2 2 ~S and A1 \ A2 = ; we have �(K(A1) \K(A1)) = 0.then ~� has a version that is a Poisson process on ( ~S; ~S) with intensity measure ~� = � �K.Corollary Let (S;S) and ( ~Sj ; ~Sj) where j = 1; : : : ; n, be measurable spaces, let Kj be a mappingfrom ~Sj to S for j = 1; : : : ; n, and let � be a Poisson process on (S;S) with intensity measure�. Assume that all singleton sets in ~Sj are measurable, that S is a Borel space and that themappings Kj , j = 1; : : : ; n, ful�ll the conditions of the above theorem. If all the intersectionsKj1( ~Sj1 ) \Kj2( ~Sj2) for j1 6= j2, have �-measure 0 the mappings ~�j = � �Kj, j = 1; : : : ; n, haveversions that are independent Poisson processes.We omit the proofs. The hard part of the proof of the theorem is to show that ~� is a countingmeasure; it is easy to show �-additivity almost surely for any �xed sequence of sets A1; A2; : : : ,but the exception set depends on the sequence of sets A1; A2; : : : . For similar proofs see, e.g.,Ho�mann-Jørgensen (1994, Sec. 10.29) for existence of regular conditional distributions.
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Age

Calendar timet2t1
Age

Calendar timet2t1Cohort study Individuals born in ]t1; t2]are observed. Time window All deaths in the time in-terval [t1; t2] are observed.Age
Calendar timet

Age
Calendar timet2t1Cross sectional study Ages of individualsalive at time t are observed. Synthetic cohort All deaths and individ-uals alive in the time interval [t1; t2] areobserved.Age

Calendar timet2t1Follow-up on cross sectional study Attime t2 we follow up on individuals aliveat time t1.Figure 1: Sampling in the Lexis diagram. A life line with slope 1 represents an indi-vidual. A circle denotes a death. Bold lines indicate what we observe.
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H�H(t; a) �I(t; a; d)D I
(t; a)'(�)
Figure 2: The disability model. The intensities describe the movements between thethree states H (healthy), I (invalid) and D (dead) as a function of the birthtime �, agea, duration d, and calendar time t = � + a.


