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Abstract

Modified versions of the life time distribution are often used in survival analysis. The modi-
fications depend on how we choose individuals for the study and on the assumptions on the
behavior of the population. A rigorous point process description of the Lexis diagram is used
to make the sampling mechanisms and the preconditions transparent. The point process de-
scription gives a framework to handle all possible sampling patterns. The setup is generalized
so it can handle more complicated life descriptions than just lifetimes, and the disability model
is used as an example. Two setups can be used. Conditional on the birthtimes, the life time
distribution is left truncated and subject to either right censoring or right truncation. Assum-
ing that the birthtimes can be described by a Poisson process the modifications are length

bias and the recurrence time distribution known from renewal theory.
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1 Introduction

The Lexis diagram (Lexis, 1875; Keiding, 1990) is a useful tool when analysing lifetimes as it is
important carefully to consider the way individuals are chosen for the study. The Lexis diagram
is a coordinate system with calendar time in the horizontal direction and age of individuals in
the vertical direction, and each individual is represented by a line. The selection of individuals
often introduces biased or otherwise modified lifetime distributions. This paper extends the point
process description of the Lexis diagram introduced by Brillinger (1986) and gives a derivation of
the likelihood functions associated with five sampling patterns. All these sampling patterns can

be handled by the point process framework provided. For four of the five patterns the likelihood
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functions are derived in two contexts: conditional on the birthtimes and under the assumption

that the process of birthtimes is a Poisson process.

The conditional approach is the one most often used in classical survival analysis (Andersen et
al., 1993), and the lifetime distributions are often left truncated and right censored in this setup.
The usual non-parametric estimators such as the Kaplan-Meier estimator and the Nelson-Aalen

estimator can be used here.

Further assumptions are required in cross sectional studies and in studies where for example the
age at entry to the study is unobserved, or the age is observed but the time of death is unobserved.
These situations have previously been handled in a renewal setup, and renewal processes are some-
times used in arguments for survival analysis likelihood functions, even though no “replacement”
takes place (McClean & Devine, 1995; Winter & Fdoldes, 1988; Denby & Vardi, 1986; Vardi, 1989,
Problem B). Here we use an alternative approach based on the point process description of the
Lexis diagram (Brillinger, 1986) and the assumption that the birthtimes can be described by a
Poisson process (Simon, 1980; Brillinger, 1986; Keiding, 1991; Keiding, 1992). The Poisson as-
sumption provides us with information on the survival until the start of the study. We now offer a
framework based on the individual lifetimes to derive the same likelihood functions as in renewal
theory, and we recognize the same forms of length bias as in renewal theory. The likelihoods are the
same and so are the estimators, but the proofs of consistency and week convergence of estimators

from renewal theory might not be valid in our setup.

We also consider a generalization of the Lexis diagram which expands the available class of models
— and thus the usefulness of the mathematical description — considerably. The general setup
provides a common framework for handling multi-state models, for example, and all sampling
patterns can be handled in a unified way. The disability model (Keiding, 1991) is used as an example
on how this “tool box” can be used. Also, the general setup allows for inclusion of covariates, as
considered by Simon (1980) in a simple example. Analysis conditional on the birthtimes and
covariates can be handled for quite complicated models (Andersen et al., 1993). Our framework
allows a more detailed study of the consequences of including covariates in models where the

birthtimes are considered random.

The paper is organized as follows: In Section 2 we discuss the basic model and summarize the
sampling patterns. The likelihood functions are derived in Section 3 (conditional on the birthtimes)
and Section 4 (with the Poisson assumption). We discuss the Poisson assumption in Section 5. In

Section 6 we generalize the setup and use the disability model as an example.

2 Sampling in the Lexis diagram

2.1 The Lexis diagram

The Lexis diagram is a coordinate system with calendar time in the horizontal direction and age
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of individuals in the vertical direction. An example of a Lexis diagram is the top left sub-figure of
Fig. 1. An individual is represented by a life line with slope 1 from the point of birth to the point
of death. If ¢ is the birthtime and z is the lifetime, then the life line is from (¢,0) to (o + z, ).
We often think of the Lexis diagram as the points (o + z, z) of deaths.

Let (0;)icr denote the collection of all birthtimes. The index set I can be taken as the integers
7, with the conventions that --- < 0; < 0441 < --- and ---0_1 < 0 < gp---. We assume that
all birthtimes are distinct, but this is not critical. Assume further that there are only finitely
many birthtimes in every bounded Borel set B C R. We think of (;);cr as a point process on R
and denote by n the associated counting measure (Daley & Vere-Jones, 1988; Karr, 1991; Stoyan
et al., 1995). Let e, be the Dirac measure at ¢, then n = >°._; &5, and n(B) is the number of
birthtimes in B. We call the point process (o;);c7 or the equivalent 7 the process of birthtimes.
The advantage of having the process of birthtimes defined on the whole axis R will be evident in
Theorem 4.1 and its applications like Example 4.3. Compared to for example Simon (1980) we

avoid asymptotic arguments like “in the distant past” or “as ¢ tends to c0”.

For all i € I, associate with the individual born at time o, a lifetime X, in Ry = [0, co].

Definition 2.1 The Lezis point process p is the point process (i, X;)icr on (R x Ry, B ® By),
that is 4=, c7 (01, x,)-

The distinction between the Lexis diagram and the Lexis point process is important. The points
of deaths in the Lexis diagram are given by the point process (o; + X;, X;):c1, but this cannot be

used as a definition of a Lexis point process in the general setup in Section 6.

2.2 Summary of the sampling patterns

In this section we review some natural ways to sample individuals in the Lexis diagram as illustrated

in Fig. 1. Let t; < t2 < t3 be given time points.

Cohort study We observe all individuals born in ]t1,%2]. Observation might be stopped at a time

t3. In this case the actual lifetimes of individuals still alive at time t3 are not observed.

Time window All deaths (times and ages) in the set [¢1,%2] X Ry are observed. An observation of

this type could arise in register based study.
Cross sectional study The ages of individuals alive at time ¢ are recorded.

Synthetic cohort All deaths and all individuals alive during the time period [t, 2] are observed.
The observation corresponds to a time window and a cross section at time ¢5. This is the

classic case as synthetic cohorts are used in the construction of life tables.

Follow-up on cross sectional study At time t5 we observe whether individuals alive at time ¢; are

dead or alive. If alive we observe the age, and if dead we observe the age and time of death.

Fig. 1

here
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2.3 The basic assumption

In this section we introduce the basic probabilistic model and some notation. We need an assump-

tion on conditional independence.

Assumption 2.2 The lifetimes X; (7 € I) are independent conditional on the process i of birthtimes

(0i)ier. The distribution of X; depends on n only through o;.

Let P be a Markov kernel from (R, B) to (Rg, Bp) describing the distribution of X; given ¢;. That
is, P is a map from R x By to [0, 1], such that P(o,") is a probability measure on (Rq, Bg) for all
o € R, and the mapping o — P(o, A) from R to [0, 1] is measurable for all A € By. We often write
P,(A) instead of P(o,A). Let F, denote the distribution function for P,, and F, = 1 — F, the
corresponding survival function. We focus on the situation where the lifetime distribution has a

density f, w.r.t. the Lebesgue measure /g on Ry.

It is tacitly understood that all relevant expectations are finite. In particular the expected life time

is finite and the mean number of individuals alive at any given time ¢ should be finite.

3 Analysis conditional on selected birthtimes

In this section we condition on the birthtimes for the individuals we observe and prove a theorem
stating that given the birthtimes for the individuals we observe, the lifetimes X; for those individ-
uals are independent. Furthermore the lifetimes must be analysed conditional on the event that
we observe the individual, and their distributions do not depend on the distribution of the process
of birthtimes. In most cases we get a traditional analysis with left truncation and right censoring

of the lifetimes.

Let (hs)oecr be a family of measurable functions h, : Ry — {0, 1} indicating whether we observe
the individual born at time o with lifetime z or not. If h,(z) = 1 we get information on the

individual, if h,(xz) = 0 we do not get information on the individual.

Theorem 3.1 Given the birthtimes o; for the individuals we observe (i € I : hy,;(X;) = 1), the
lifetimes X, for those individuals are independent, and the lifetime X; for i € T with h,,(X;) =1
has distribution P, (-|hy, (X;) =1).

Proof Assumption 2.2 states that, given n = )
X;~ P,,.

ic1 i, the lifetimes (X;);e; are independent and

Now condition on both 5 and the family of functions (h,,(X;))ic7. Then (X;);cr are independent
and X; ~ P, (| hy;(X;)). To see this, note that we have

ﬁ((Xi)ief‘n - Za,,,): D, iPoi(Xi € -)

i€l
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where I denotes any finite subset of I and ®,c 7P, is the product measure. The further condition-
ing on (h,,(X;))ier has a product structure, and thus by the principle of repeated conditioning

(Jacobsen, 1982, App. 1) the independence is preserved and

£(C0,er]n = S e e, (CEier ) = 9,c7Po, (X € - i (X0

iel

Projection on the coordinates i € I : hy,(X;) = 1 gives that (X;);er.,,(x,)=1 are independent
given 7 and (hUi (Xi))iGI: and X; ~ Po'i ( ‘h’ﬂi (XZ) = 1)

This conditional distribution does not depend on those ¢; and h,, (X;) for which h,,(X;) = 0, and

they can be omitted from the conditioning. d

Let O be a deterministic measurable subset of the Lexis diagram R x Ry with the property that
all possible life lines intersect O at most once. O indicates which area of the Lexis diagram we
observe. Imagine an infinite life line attached to the individual born at time o. Let aiy,, be the
age when the life line enters O, and let aoyut,» be the age when the life line leaves O again. If the
life line does not leave O again, then aou¢,» = oc. In case the life line does not intersect O we
define ain,s = @out,» = o0. The ages ain,, and aout,, are deterministic conditionally on o, so the
truncations and censoring in the following are independent (Andersen et al., 1993, Sec. I11.2, I11.3).
Truncation is inference in a conditional distribution, and left truncation is when we condition on
the lifetime being larger than a certain age. Censoring, on the other hand, is an incomplete
observation. Right censoring occurs when we only observe the lifetime to be larger than a certain

age, but do not observe the lifetime itself.

We consider two situations. First, let h,(z) be the indicator function for the event (z > ain,o)-
This means we observe life lines intersecting the observation set O. Conditional on the birthtimes,
the observed lifetimes are independent and X; for j € J = {i : hy, (z;) = 1} must be analysed left
truncated at ages ain -, Because we only observe points of death in the set O, the lifetimes are right
censored at ages aout,s,; - If the Markov kernel P, () does not depend on ¢ we immediately have the
Kaplan-Meier estimator for the survival function, the Nelson-Aalen estimator for the integrated
hazard, and asymptotic results of their behaviour (Andersen et al., 1993, Sec. IV.1.5). Second, let
hs(z) be the indicator function for the event (@in,, < Z < @out,s). This means we only observe
individuals whose points of death are in the set O. Conditional on the birthtimes o; = t; — z;
for the |J1| deaths observed at (¢;,2;) e, , the lifetimes X; for j € J; are independent and must
be analysed left truncated at age @in,o; and right truncated at age aout,s;- The nonparametric
maximum likelihood estimator is a special case of the Turnbull estimator (Turnbull, 1976), which

in turn is an example of the EM algorithm.

We are now ready to analyse four of the five sampling patterns. The lifetimes X in the cohort study
should be analysed as independent and from the distribution f;, as ain,s; = 0 and aeut,s; = oc for
individuals we observe. If observation is stopped at time ¢3 we analyse the lifetimes right censored

at ages dout,s;- In the time window the lifetimes are left and right truncated at age Gin,o; and
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Gout,s; Tespectively. Both the synthetic cohort and the follow up on cross sectional study have the

lifetimes left truncated and right censored at age ain,s; and a@out,»; Tespectively.

For cross sectional data the situation is different. Indeed, let h,(z) be the indicator function for
the event (0 < t,x >t — o) and let (a;);es, denote the |.J5| ages of individuals alive at time ¢.
Conditionally on the birthtimes o; =t —a; the lifetimes X; are independent and must be analysed
in the conditional distribution given X; > ai », = a;. Unfortunately this is everything we observe
about X, and thus the likelihood function equals 1. However, with a model for the birthtimes 7,

cross sectional data can be analysed.

4 A Poisson model for the process of birthtimes

In the cross sectional study we need a model for the birthtimes so we can use information on survival
until the start of the study. We see various forms of length bias instead of left truncation in all
sampling patterns. The Poisson process is mathematically convenient as a process of birthtimes

(Brillinger, 1986) and we discuss it further in Section 5.1.

4.1 General Poisson setup

In this section we model the process of birthtimes n as a Poisson process. That is, the numbers
of births in disjoint sets are independent and the number of births n(B) in a bounded Borel set
B € B is Poisson distributed with mean En(B) = ®(B) < oo. The intensity measure ® for the
process of birthtimes is not allowed to have any atoms, and we assume it has density ¢ w.r.t. the

Lebesgue measure [ on R. We call ¢ the intensity of .

The following theorem states that the Lexis point process is a Poisson process when the process
of birthtimes is a Poisson process. The theorem is known as “positioning dependent marking”
(Karr, 1991, Example 1.28 and 2.24, Exercise 1.11) and is mentioned by Daley & Vere-Jones (1988,
pp- 205-206). It is formulated in a general version that will be needed in Section 6. For now, the
measurable spaces (E,€) and (G, G) could be substituted by (R, B) and (Rq, By) respectively, and
Y, could be substituted by X;.

Theorem 4.1 Letn be a Poisson process on (E, E) with intensity measure ® and let P be a Markov
kernel from (E, &) to (G,G). Assume that, given n =3, €4, (Yi)icr is a family of independent
random variables, Y; with distribution P(o;, -) on (G,G) for alli € I. Then the Lexis point process
= Ziel E(0,,v;) 18 @ Poisson process on (E x G,& ® G) with intensity measure A given by
A(Ax B) = / P(o,B) ®(do) (1)
A

for A€ € and B € G.
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Proof Brillinger (1986) proved the result in the case of Example 4.2 below, but he did not state
the result in the generality of the theorem. His proof carries over to the general situation and is

fairly straightforward using Laplace functionals. O

With the notation from Section 2.3, the intensity measure A for the Lexis point process p has
density Ao, z) = ¢(0) fs(z) w.r.t. I ® ly according to the theorem. We call A the intensity for u.

The following two examples introduce the important point processes fi and N*.

Ezample 4.2 (Points in the Lexis diagram) The points of deaths in the Lexis diagram are a bi-
jective transformation (¢, x) oy (t + z,z) of the points in the Lexis point process. The map h
transforms p to the point process of deaths in the Lexis diagram fi = h(p) = >, ./ €(0:+x,,x,), and
fi is a Poisson process with intensity measure A = h(A) that has intensity \(t,a) = ¢(t —a) f;_.(a)
(Brillinger, 1986). That is, the expected number of deaths in calendar time ¢, + dt] and at age
la,a + da] is A(t,a) dt da. O

Ezample 4.3 (Cross section) For fixed t € R define K : By = B® By by K(A) = {(0,2) : 0 <
tyx >t—o,t —o € A}. Then N'(A) = u(K(A)) is the number of individuals alive at time ¢ with
age in A. The theorem in the appendix states that for ¢ fixed, N*(-) has a version that is a Poisson
process on Rg. The intensity is A (a) = ¢(t — a)F;_,(a). This is seen from

EN*(0,a]) = A“([0,)) = A(K ([0, a))) = /K I CELCS

- [ [ enwacas
_ /:W W) Fhu(u) du,

by substitution of s by u = ¢ — s. (The second equality is due to the appendix, the fourth equality
is due to Theorem 4.1.) Keiding (1991, p. 379) stated a somewhat similar result without making

the underlying assumptions clear. O

Ezample 4.4 (Independence) We can use Theorem 4.1 and the basic independence property of the
Poisson process to infer results about independence of relevant observations in survival analysis.
The two point processes Nt and i are of course not independent. However N* and the restriction
of ji to ] — 00,t[xRy have independent versions because they concern disjoint parts of the Lexis
diagram. This means that the number and ages of individuals alive at time ¢ are independent of

deaths before time ¢. Similar arguments were also used by Brillinger (1986). O

We need a few general results about Poisson processes (Daley & Vere-Jones, 1988). If u; and uo are
independent Poisson processes on (S1,S1) and (S2,Ss) respectively, they correspond to one Poisson
process on the disjoint union S; U Sy = {(j,s)|(j = 1,5 € S1) or (j = 2,5 € S)}. Let u be a
Poisson process on (5, S) with intensity measure A and let A € S such that 0 < A(A) < co. Given
w(A) = n = |J|, the points (x;);es of u on A are i.i.d. with distribution #(-) = A(- N A)/A(A).
Assume that A has intensity A w.r.t. a suitable reference measure. The likelihood for the observation
(zj)jes of pon Ais L oc exp(—A(A)) [[;c; Azj).
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These properties of Poisson processes together with the three basic examples 4.2, 4.3, and 4.4
make up the basic parts in the following. For each of the sampling patterns in Section 2.2 we
investigate how to analyse the observations. The procedure is to identify the sampling pattern as
an observation of fi and Nt on suitable sets and for a suitable ¢. The observations are independent
according to Example 4.4 and we have an expression for the likelihood function. In case the
expected number of observed points (A(A) above) depends on the life time distribution f we
often have problems interpreting the likelihood function. We condition on the observed number of
individuals to obtain an alternative likelihood in this situation. Sections 4.4 and 4.5 illustrate an
important point in this respect — whether to condition on the total number of individuals or to

condition on the numbers of individuals from each of the two processes.

The process of birthtimes is Poisson with intensity ¢(¢). The starting point is the Poisson process of
deaths, fi, with intensity ;\(t, a) = o(t — a) fi—a(a). We focus on the time homogeneous case where
neither the process of birthtimes nor the lifetimes are allowed to depend on calendar time; ¢(t) = ¢
and fi_.(a) = f(a). Thus A(t,a) = ¢f(a). Let M denote the expected lifetime [ af(a)da =

fooo F(a)da. The assumption of time homogeneity is discussed in Section 5.2.

The following notation is used in the rest of Section 4. Let (t;,z;);es, be an observation of j
on a suitable set C' depending on the sampling pattern. That is, (¢;,z;) is the time and age of
death for individual j, and we have observed |J;|= i(C) deaths. (The death times t; should
be distinguished from the sampling constants ¢; and ¢ without problems.) In a similar way, let
(aj)jes, be an observation of N* on a set C. That is, a; is the age of an individual alive at time ¢
and | J;|= N*(C) is the number of individuals alive at time ¢ with age in C. The individuals alive

are censored at the observed age.

4.2 Cohort study and time window

We observe deaths in the Lexis diagram on the set O.s = {(s,a) € R X Ryg|s — a €]t1, 2]} in the
cohort study. The expected number of deaths is (t2 — ¢1)p, which equals the expected number of
births in Jt;,t5]. The likelihood is L o exp(—(ty — t;)p)@"(Os) [1;cs, f(z;j). The birth intensity
is estimated by ¢ = 1(Ocs)/(t2 — t1) and the lifetime distribution f must be estimated by fi(Ocs)

independent observations from f.

In case the study is stopped at time t3, the observation is composed of two independent observa-
tions. An observation of the deaths in the Lexis diagram on the set Os N (] — 00, t3] X Ry) and an
observation of the ages of individuals alive at time ¢3. The latter is an observation of N* on the
set [tz —ta,t3 —t1[. The expected number of points are f:f Os\jstitg ¢ f(a)dads and ftt;:tzl oF(a)da
respectively, and the likelihood function is thus proportional to

exp (—(t2 — t1)@) o M2 [T f(2;) [T e, Fla;). We see, that the ages must be analysed as

independent with ordinary right censoring. This is also the case when we condition on the total

number of individuals observed.
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In the time window we observe the deaths in the set [t1,#2] X Ry. This is, word for word, the same
as the cohort study except that we do not have the notion of censoring here. The expected number

of individuals is the same, the likelihoods are the same etc.

4.3 Cross sectional study

In a cross sectional study at time ¢ we observe N* on the whole axis Ry. The expected number of in-
dividuals alive at time ¢ is oM, and thus the likelihood function equals L o exp(—@M )N (Ro) [T,es, Fa)).
Since the mean lifetime M depends on f, it is not obvious how to maximize the likelihood function.
Conditioning on the observed number of individuals N¢(Ry) = n, the observed ages are i.i.d. with
density F(a)/M. In epidemiology it has been known for a long time that the density of ages in
a cross section in a “stable” population is proportional to the survival function, see for example
Pressat (1995, p. 150). The density F'(a)/M is the stationary recurrence distribution known from
renewal theory and it reflects the fact that we observe the ages of individuals alive and thus are
subject to interception bias. Feller (1971) page 369 (4.6), page 371 (4.16), and Problem 10 page 386
gives an overview of biased distributions in renewal theory, and Vardi (1988) advocates the ter-
minology “interception bias” for the stationary recurrence time distribution. The nonparametric
maximum likelihood estimator from n i.i.d. replications from the recurrence time distribution is
known in the literature as the Grenander estimator, see Barlow et al. (1972, pp. 223), Denby &
Vardi (1986), and Vardi (1989, Problem D).

4.4 Synthetic cohort

Observing deaths and individuals alive in a time window is equivalent to observing deaths in a
time window and a cross section at time t;. The two observations are independent. For the
cross sectional study we know that it is most sensible to condition on the number of individu-
als alive at time t5. By symmetry it seems natural to condition on the number of deaths ob-
served as well. Conditional on fi([t1,%2] X Ry) = n; and N®(Ry) = ns the likelihood equals
Lo [[es, f@) [Tie s, F(aj)/M. The nonparametric maximum likelihood estimator is consid-
ered by Vardi (1982) and Soon & Woodroofe (1996). Conditional on the total number fi([t1, 2] X
Ry) + N'2(Ry) being equal to n, we obtain a likelihood with factors f(z;)/(M + (t2 — t1)) and
F(aj)/(M + (t2 — t1)). This likelihood has no nice interpretation and thus it does not seem

reasonable to condition on the total number of individuals.

4.5 Follow-up on cross sectional study

We follow the individuals alive at time t;. At time 5 the observation is stopped and we have
censoring. This situation is very much like the censoring in the cohort study in Section 4.2. Simon

(1980) considers the follow up on a cross sectional study in a slightly different setup.
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Assume that we follow individuals alive at time #; until death. That is, we observe the deaths
(tj,z;)jes, in the Lexis diagram on the set On, = {(s,a) € R x Ry|s > t1,a > s — t1}. The
expected number of individuals is the expected number of individuals alive at time ¢, i.e. M.
The likelihood function is L oc exp(—@M )@ (Om) [l;cs f(z;). Conditioning on fi(Or.) = n, the
points (t;,%;);es, are ii.d. with density

(=)

a7 L ((t5,25) € Ora). (2)

The distribution (2) is known from renewal theory as the simultaneous distribution of a forward
and backward recurrence time. The point (¢;,z,) is simply a bijective transformation of (b;,¢;) =
(zj — (t; —t1),t; — t1), the time lived before and after time ¢; respectively, so an interpretation of
x; = b; + ¢; as the sum of the two recurrence times is natural. The marginal distribution of z;
has the length biased distribution with density (zf(z))/M. The likelihood function based on the

marginal distribution of 2 depends on f in the same way as the simultaneous likelihood (2).

When stopping the observation at time 5, we transform the points (¢;,x;) with ¢; > t2 to (t2,2; —
(t; —t2)). (This is a non-injective transformation of a Poisson process and we use the Theorem
in the appendix. We get the same result if we consider the censoring in the same way as in
Section 4.2.) A censored point contributes to the likelihood by a factor F'(a)/M from the recurrence
time distribution. This means that if we observe the deaths (¢;,2;);cs, and the ages (a;);es, of

individuals alive at time ¢, the likelihood is

f(z5) 7 Flay)

e e 1 .
conditional on the total number of individuals |Ji|+|J2|= n. As noted the contributions from
censored observations to the likelihood function is interception biased. This can be interpreted as
a censoring of the forward time in the simultaneous distribution of backward and forward times (2).

Note that right censoring in the marginal distribution of z; gives a different result!

Winter & Foldes (1988) find the nonparametric maximum likelihood estimator for the likelihood (3)
in a renewal process setup and it can be re-derived in a counting process framework (Keiding &

Gill, 1988, Section 7). The estimator is found in yet another setup by Vardi (1989, Problem B).

5 Discussion of some assumptions

In Section 5.1 we discuss the Poisson assumption from Section 4, and in Section 5.2 we consider the
situation where the process of birthtimes is non time-homogeneous. Remember that conditional on
the birthtimes for observed individuals the distribution of the process of birthtimes is irrelevant.
The survey paper Keiding (1990) discusses estimation of the lifetime distribution conditional on
the birthtimes when the lifetime distribution depends on calendar time as well as age. A simple

example is when the hazard «(t, a) for P,_,(-) at age a is piecewise constant. As in the ordinary
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case with the age axis only, the maximum likelihood estimator of each of these constants is an

“occurrence exposure rate”. That is, the number of deaths divided by the total time under risk.

5.1 The Poisson assumption

The advantage of an assumption on the distribution of the process of birthtimes is that we can use
information on survival until the start of the study. This is most predominant in the cross sectional
study where such an assumption is mandatory. The Poisson process is a rough, but very useful
approximation of real open populations. The most important aspect of the Poisson assumption is
the independence between individuals. Note, that we most often condition on a suitable number of
individuals before the lifetimes can be analysed as independent. Brillinger (1986), Keiding (1991),
references therein, and the accompanying discussions have a lot of comments on the applicability
of the Poisson assumptions in real life setups. The conclusion is that the Poisson approximation
usually performs well. Another approach would be to model changes in a general population
with the general framework in Section 6. The Poisson process assumption is the most simple and

non-informative assumption we can make.

The Poisson assumption is also mandatory in for example the time window (Section 4.2) when the
time of death t; or the age at entry is unobserved. See also references on renewal processes given

in the introduction.

When both the conditional approach and the Poisson approach are available, which one should we
use? When M is small compared to ]¢1, 2] the synthetic cohort and the time window have almost
identical likelihoods as the fraction of individuals dying in the interval tends to one. Furthermore
the fraction of individuals that are both born and die in ]¢1,%s] tends to one. In this case, the
likelihood functions conditional on the birthtimes and with the Poisson assumption is almost
identical since the individuals that are both born and die in ]¢1,t2] contribute by a factor f(z) in
both cases. The conclusion is that the Poisson assumption is useful when M is large compared to
Jt1,t2], and in the cross sectional study and the follow-up on a cross sectional study. As will be
seen in Example 6.2, the mean lifetime M could for example be the mean time spent in a disease
state. I am not aware of any work comparing actual estimates and their variances conditional on

the birthtimes and with the Poisson assumption.

5.2 Process of birthtimes depends on calendar time

Consider a non time-homogeneous Poisson process with intensity ¢(t) describing the births and
the lifetimes being time-homogeneous; fs(a) = f(a). Assume that the birth intensity ¢(t) is
known. In a cross sectional study we observe the |Jo|= N'(Ry) ages (a;),cs, of individuals alive
at time . The expected number of individuals is [;° ¢(t — a)F(a)da and thus the likelihood
is L oc exp (= [;° @(t —a)F(a)da) [T;c,, ¢(t — a;)F(a;). Conditional on N'(Ry) = n, the ages
(a;)jes, are iid. with density o(t — a)F(a)/ [y ¢(t — a)F(a)da. In both cases ¢ appears as a



Sampling in the Lexis Diagram 12

weight function for the observed ages. If for example the mean number of newborn is increasing,

more weight is given to young individuals.

The lifetimes can be analysed by the age transformation h(a) = [ ¢(t —s) ds. Let a; = h(a;) and
note that the transformed ages (@;);c, are i.i.d. with density F'(h="(a))/M. Here M is the mean
lifetime in the distribution with survival function Floh~!. As in Section 4.3 we obtain an estimate

for Foh™!, and h is known so we get an estimate of F.

A similar age transformation can be used in the other sampling patterns, except the cohort study
where no special tricks are needed. When ¢ is not known in advance one might use an estimate
of ¢. Keiding (1992, p. 319) gives the advice to avoid the reliance on the stationarity assumption
when ever possible. The alternatives are to condition on the birthtimes or to use information on

the non-homogeneity as demonstrated here.

6 Generalizations

In applications there would often be complications due to for example migration and population
heterogeneity. In some cases, when accurate individual level data are available, estimation may be
carried out by allowing for covariates and more complicated life descriptions. We use the disability
model as an example, and we focus on probabilistic statements about the disability model, whereas

Keiding (1991) focuses on estimation.

6.1 Generalizations of the Lexis diagram

We extend the notation from Section 2.1 and restate some earlier results. Let n = ), ;&,, be
the point process of birthtimes (0;);c;r on a measurable space (E, ). For example, if we want the
covariate gender in our model, we take E as Rx {male, female}. We call a description of a whole life
Y and assume it has values in a space (G, G). Such a description can be a stochastic process (Y5 )a>0
describing the status Y, of the individual at age a. Marked point processes on the real line is one
possible class of processes (Andersen et al., 1993). They can be illustrated in the Lexis diagram
by adding marks on the life lines at the time points of events. Let Y; be the life description
for the individual born at “time” o; and let (Y;);c; be the collection of life descriptions. As in
Definition 2.1 we define the Lezis point process u as the point process (0;,Y;)ic; on (Ex G, ERQG),
that is = ;.7 €(s,,v;)- Similar to Assumption 2.2 we assume that the life descriptions Y; (i € I)
are independent conditional on the process n of birthtimes (¢;);cr and that the distribution of Y;
depends on 7 only through ;. Furthermore, as in Section 2.3, let P be a Markov kernel from
(E,€) to (G,G) describing the distribution of Y; given o; and use similar notation. Theorem 3.1
carries over without problems, and Theorem 4.1 is already formulated in the general context. As
in Section 4.1 the intensity measure A for p has intensity A(o,y) = ¢(0)g(o,y) w.rt. 7p ® g,
whenever the intensity measure ® for the process of birthtimes n has density ¢ w.r.t. a measure

g on E and the measures P(o, -) have density g(o,y) w.r.t. a measure 7g on G.
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6.2 Example: the disability model

The disability model in Fig. 2 has three states, H (healthy), I (invalid), and D (dead). Assume
that the process of birthtimes is Poisson with intensity (o), the transition intensities from state H
are ag(t,a) and v(t,a), and that the death intensity a;(t,a,d) from state I depends on calendar
time t = o + a, age a and duration d. No reactivation is allowed, that is, the transition I — H
is not possible. The space G of life descriptions can be taken as all right continuous piecewise

constant functions (Y;),>0 with state space G = {H,I,D} and only finitely many jumps in finite

time.

The transition intensities specify the Markov kernels P, (-) and for example
P,({Yo=H}) =1,
P,({Ya = H}) = exp (— [ ten e+ du) ,
PV, =1}) = /0 [e‘fﬁ'(“flﬂ)(”“w) oo+ u,u)e” i or(etvvv—w dv] g,

Note that the processes Y are not Markov processes because the intensity from state I depends

on how long the individual has been in state I.

For Y € G define T} as the age at the jump out of state H and T> as the age at the jump into
state D. If the first jump is H — D then T5 = T, else the first jump is H — I and T5 is the age
at the second jump I — D. Let # denote “number of”, and define fort € R, A,B € By and C € B

the following quantities:

e NUH(A) = 4 individuals in state H at time t and age in A.
e NYI(A x B) = # individuals in state I at time ¢, age in A and duration in B.

e NUHD(C x A) = # individuals in state D at time ¢, who made the transition H — D at

calendar time in C' and at age 77 in A.

e NUI'P(C x A x B) = # individuals in state D at time #, who made the transition I — D at

calendar time in C, at age T in A and duration Ty — T} in B.

e NH.I(C x A) = # individuals making the transition H — I at age in A and calendar time
in C.

The processes NH and NI count the number of individuals in states H and I, whereas N*-P
and N“T-P describes the time point for the transition to state D. We now find the intensities for

the N processes and some independence relations.

Theorem 6.1 The processes NUH (), NGI(), NCHP () NELD (Y and NH1(.) all have versions
that are Poisson processes, and the versions of NtH NI NHHD gnd NUID gre independent.

The intensity processes are given by

M (q) = o(t — a) exp <_ /Oa(aH )t —a+u,u) du> ,

Fig. 2

here
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M (a,d) = 1(d < a) p(t — a) exp (- /Oad(aH )t —a+uu) du>
X 3t — d,a — d) exp (—/aa_da[(t—a+u,u,u—(a—d))du),
AP (s,a) = 1(s £ 1) p(s — a) exp (/Oa(aH +7)(s —a+u,u) dU) am(s,a),
MTD(s 0 d) =1(s < t.d < a) o(s — a) exp <_ /Oa_d(aH (s — a+ u,u) du>
X y(s - d,a — d) exp <— /:doq(s Catuumu—(a— d))du) ar (s, a,d),

M (4 a) = o(t — a) exp <_ /Oa(aH )t —a+u,u) du> ~(t.a).

Proof The processes have versions that are Poisson processes according to the theorem in the
appendix: The space Rx G is a Borel space because it can be written as a sequence space. Bounded
sets in the arguments of the N processes relate to bounded sets for the process of birthtimes, and
hence the expected values are finite. The lifetime distributions are continuous so singleton sets
have zero measure. For N©#:P NtL.D and N7 we do not have disjoint sets in Rx G for disjoint
sets of the argument, but the intersections have intensity measure zero because each individual
P,-a.s. makes the transitions 0 or 1 time. Similarly the processes Nt#, NtI NtH.D and NtI.D

have independent versions according to the corollary in the appendix.

The calculation of the intensities is straightforward, using the definitions of the processes and the

intensity measure (1). O

Theorem 6.1 states for example that the number of individuals in state H respectively I at time
t are independent and both Poisson distributed. Conditional on N*H (Ry) + N*'(Ry x Ry) = n,
the distribution on state, age, and duration for a random individual is given by

t,H
P(individual in H) =1 — P(individual in I) = == H(]ROE)]:T_ E ](\/']%OI)(]RO X Ro)’

P(age € dalindividual in H) = & da
ENtH(Rg)
P(age € da,duration € dvlindividual in I) = M da dv.
’ ENtI(Ry x Ro)

Ezample 6.2 (Prevalent cohort study) The prevalent cohort study (Simon, 1980; Keiding, 1992,
Sec. 7) is a sample of the individuals in the disease state I at time ¢;, and at time ¢, we follow up
on the sampled individuals. We are interested in the intensity ay, that determines the duration of

the stay in state I.

Simon (1980) assumes individuals enter state I as a time homogeneous Poisson process in calendar
time and does not consider age at all. So “when living in a world of only diseased” we can apply
the results in Section 4.5 to the duration in state I. We now comment on the situation where age

is considered.
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Keiding (1992) states in an informal way that conditional on suitable times the hazard for the
age at death is ;. We now state a similar result and assume all three variables time, age, and
duration known. Define (t.,a.) = (¢ + Ty, T}), the calendar time and age at entry to state I, and
the duration d = T, — T of the stay in state I. Note that the Lexis point process is a bijective
transformation of ((o; + T1,i,71,:), (T2,; — T1,:))icr- Note furthermore that d > 0, and that d > 0
if and only if the transition H — I is made. Conditional on (t.;,ae;)icr the durations (d;);er
are independent since we condition on the birthtimes o; = t.; — a.;, and the duration d has
distribution:

V(te, a.)
(am +7)(te; ac)’
hazard for d|d > 0: aj(te +d,a. +d,d) = ars_ . (d).

Pd>0)=1-P(d=0)=

We now consider the pair (t.,a.) as the birthtime and d as the description of life. The arguments
just given show that Assumption 2.2 is fulfilled. Theorem 3.1, with h(, ,,) as the indicator function
for individuals in state I at time ¢, states that the durations must be analysed as independent and
left truncated at the duration at time point #; conditional on (t., a.). But left truncation preserves

the hazard az;_ . (d) and we have independent delayed entry (Keiding, 1992).

Information on the duration up to the sampling point ¢; can be used if we assume that the process
of birthtimes o; is a Poisson process. Assume that all intensities are independent of calendar time
t, and that the death intensity a; (¢, a,d) = a;(d) for diseased individuals only depends on duration
d. This assures that individuals enter state I as a homogeneous Poisson process in calendar time
t, even though the intensity v(a) is allowed to depend on age a. This is the case of Simon (1980)
and Section 4.5. We can easily show that conditional on the number of sampled individuals, the

joint distribution of age a. at entry to state I and total duration d has a density proportional to

exp (_ foae (an +7)(u) dU) v(ae)  fi(d)
o7 exp (= [y (am +7)(u) du) y(a)da My~

Here f; denotes the density with hazard a;(d), and M; the mean time spent in state I. The

duration d must be analysed as in Section 4.5 and independent of the age at entry to state . O
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Appendix: non-injective transformation of Poisson processes

This appendix describes how we can transform a Poisson process by a class of non-injective trans-
formations and still get a Poisson process. This extends well-known results on transformation of

Poisson processes by injective maps h : (S,S) — (S, S) corresponding to K = h™! below.

When (5’, S) is~a measurable space we equip the function space KE of functions p : S = Ry with the
o-algebra J(KE) induced by the projections u — p(A) for all A € S. Two random variables p, fi
defined on (9, F, P), taking values in (RE, a(@i)) are versions of each other if P(u(A4) = u(A)) =1
for all A €.

To talk about bounded set A € S we need some structure on S. We could for example require S to
be a complete separable metric space (Daley & Vere-Jones, 1988) or a product of such a space and
a space without any special structure. In the last case a bounded set is (a subset of) a bounded

set x the space without structure.

Theorem Let (S,S) and (S'S) be measurable spaces, let K be a mapping from S to S, and let u
be a Poisson process on (S,S) with intensity measure A. Assume that all singleton sets in S are

measurable. Then fi = po K is a random variable taking values in (@E, U(ﬁi)). If

e S is a Borel space.
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o« K(0)=0.

e K is countably set additive; that is for Ay, As,--- € S we have
K(AiUAs U ) = K(A)UK(A2)U---.

o Forac S we have A(K({a})) = 0.

For A € S bounded we have A(K(A)) < oc.

For Ay, As € S and Ay N Ay = 0 we have AMK(A)NK(Ay)) =0.

then [i has a version that is a Poisson process on (SN‘, S) with intensity measure A = Ao K.

Corollary Let (S,S) and (gj,gj) where j = 1,...,n, be measurable spaces, let K; be a mapping
from Sj toS for 3 = 1,...,n, and let u be a Poisson process on (S,S) with intensity measure
A. Assume that all singleton sets in S‘j are measurable, that S is a Borel space and that the
mappings K;, 7 = 1,...,n, fulfill the conditions of the above theorem. If all the intersections
K;,(S;,) N K;,(S},) for j1 # ja, have A-measure O the mappings ji; = po K;, j = 1,...,n, have

versions that are independent Poisson processes.

We omit the proofs. The hard part of the proof of the theorem is to show that fi is a counting
measure; it is easy to show o-additivity almost surely for any fixed sequence of sets Ay, As, ...,
but the exception set depends on the sequence of sets Ay, As,.... For similar proofs see, e.g.,

Hoffmann-Jgrgensen (1994, Sec. 10.29) for existence of regular conditional distributions.
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s

ty to Calendar time

Cohort study Individuals born in ]¢1,¢2]
are observed.

s

ty to Calendar time

Time window All deaths in the time in-
terval [t1, 2] are observed.

s

t Calendar time

Cross sectional study Ages of individuals
alive at time ¢ are observed.

s

Calendar time

L
tq to

Follow-up on cross sectional study At
time £2 we follow up on individuals alive
at time ¢1.

ty to Calendar time

Synthetic cohort All deaths and individ-
uals alive in the time interval [t1,¢2] are
observed.

Figure 1: Sampling in the Lexis diagram. A life line with slope 1 represents an indi-
vidual. A circle denotes a death. Bold lines indicate what we observe.



Sampling in the Lexis Diagram

¢(o) v(t, a)

H I
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Figure 2: The disability model. The intensities describe the movements between the

three states H (healthy), I (invalid) and D (dead) as a function of the birthtime o, age

a, duration d, and calendar time t = o + a.
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